408 research outputs found

    Fault-tolerant computation using algebraic homomorphisms

    Get PDF
    Also issued as Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1992.Includes bibliographical references (p. 193-196).Supported by the Defense Advanced Research Projects Agency, monitored by the U.S. Navy Office of Naval Research. N00014-89-J-1489 Supported by the Charles S. Draper Laboratories. DL-H-418472Paul E. Beckmann

    Core Failure Mitigation in Integer Sum-of-Product Computations on Cloud Computing Systems

    Get PDF
    The decreasing mean-time-to-failure estimates in cloud computing systems indicate that multimedia applications running on such environments should be able to mitigate an increasing number of core failures at runtime. We propose a new roll-forward failure-mitigation approach for integer sumof-product computations, with emphasis on generic matrix multiplication (GEMM)and convolution/crosscorrelation (CONV) routines. Our approach is based on the production of redundant results within the numerical representation of the outputs via the use of numerical packing.This differs fromall existing roll-forward solutions that require a separate set of checksum (or duplicate) results. Our proposal imposes 37.5% reduction in the maximum output bitwidth supported in comparison to integer sum-ofproduct realizations performed on 32-bit integer representations which is comparable to the bitwidth requirement of checksummethods for multiple core failure mitigation. Experiments with state-of-the-art GEMM and CONV routines running on a c4.8xlarge compute-optimized instance of amazon web services elastic compute cloud (AWS EC2) demonstrate that the proposed approach is able to mitigate up to one quadcore failure while achieving processing throughput that is: 1) comparable to that of the conventional, failure-intolerant, integer GEMM and CONV routines, 2) substantially superior to that of the equivalent roll-forward failure-mitigation method based on checksum streams. Furthermore, when used within an image retrieval framework deployed over a cluster of AWS EC2 spot (i.e., low-cost albeit terminatable) instances, our proposal leads to: 1) 16%-23% cost reduction against the equivalent checksum-based method and 2) more than 70% cost reduction against conventional failure-intolerant processing on AWS EC2 on-demand (i.e., highercost albeit guaranteed) instances

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    Architectures and implementations for the Polynomial Ring Engine over small residue rings

    Get PDF
    This work considers VLSI implementations for the recently introduced Polynomial Ring Engine (PRE) using small residue rings. To allow for a comprehensive approach to the implementation of the PRE mappings for DSP algorithms, this dissertation introduces novel techniques ranging from system level architectures to transistor level considerations. The Polynomial Ring Engine combines both classical residue mappings and new polynomial mappings. This dissertation develops a systematic approach for generating pipelined systolic/ semi-systolic structures for the PRE mappings. An example architecture is constructed and simulated to illustrate the properties of the new architectures. To simultaneously achieve large computational dynamic range and high throughput rate the basic building blocks of the PRE architecture use transistor size profiling. Transistor sizing software is developed for profiling the Switching Tree dynamic logic used to build the basic modulo blocks. The software handles complex nFET structures using a simple iterative algorithm. Issues such as convergence of the iterative technique and validity of the sizing formulae have been treated with an appropriate mathematical analysis. As an illustration of the use of PRE architectures for modem DSP computational problems, a Wavelet Transform for HDTV image compression is implemented. An interesting use is made of the PRE technique of using polynomial indeterminates as \u27placeholders\u27 for components of the processed data. In this case we use an indeterminate to symbolically handle the irrational number [square root of 3] of the Daubechie mother wavelet for N = 4. Finally, a multi-level fault tolerant PRE architecture is developed by combining the classical redundant residue approach and the circuit parity check approach. The proposed architecture uses syndromes to correct faulty residue channels and an embedded parity check to correct faulty computational channels. The architecture offers superior fault detection and correction with online data interruption

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on sixteen research projects and a list of publications.Bose CorporationMIT-Woods Hole Oceanographic Institution Joint Graduate Program in Oceanographic EngineeringAdvanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-93-1-0686Lockheed Sanders, Inc./U.S. Navy - Office of Naval Research Contract N00014-91-C-0125U.S. Air Force - Office of Scientific Research Grant AFOSR-91-0034AT&T Laboratories Doctoral Support ProgramAdvanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-89-J-1489U.S. Navy - Office of Naval Research Grant N00014-93-1-0686National Science Foundation FellowshipMaryland Procurement Office Contract MDA904-93-C-4180U.S. Navy - Office of Naval Research Grant N00014-91-J-162

    Efficient modular arithmetic units for low power cryptographic applications

    Get PDF
    The demand for high security in energy constrained devices such as mobiles and PDAs is growing rapidly. This leads to the need for efficient design of cryptographic algorithms which offer data integrity, authentication, non-repudiation and confidentiality of the encrypted data and communication channels. The public key cryptography is an ideal choice for data integrity, authentication and non-repudiation whereas the private key cryptography ensures the confidentiality of the data transmitted. The latter has an extremely high encryption speed but it has certain limitations which make it unsuitable for use in certain applications. Numerous public key cryptographic algorithms are available in the literature which comprise modular arithmetic modules such as modular addition, multiplication, inversion and exponentiation. Recently, numerous cryptographic algorithms have been proposed based on modular arithmetic which are scalable, do word based operations and efficient in various aspects. The modular arithmetic modules play a crucial role in the overall performance of the cryptographic processor. Hence, better results can be obtained by designing efficient arithmetic modules such as modular addition, multiplication, exponentiation and squaring. This thesis is organized into three papers, describes the efficient implementation of modular arithmetic units, application of these modules in International Data Encryption Algorithm (IDEA). Second paper describes the IDEA algorithm implementation using the existing techniques and using the proposed efficient modular units. The third paper describes the fault tolerant design of a modular unit which has online self-checking capability --Abstract, page iv
    • …
    corecore