1,288 research outputs found

    Fast computation of spectral projectors of banded matrices

    Full text link
    We consider the approximate computation of spectral projectors for symmetric banded matrices. While this problem has received considerable attention, especially in the context of linear scaling electronic structure methods, the presence of small relative spectral gaps challenges existing methods based on approximate sparsity. In this work, we show how a data-sparse approximation based on hierarchical matrices can be used to overcome this problem. We prove a priori bounds on the approximation error and propose a fast algo- rithm based on the QDWH algorithm, along the works by Nakatsukasa et al. Numerical experiments demonstrate that the performance of our algorithm is robust with respect to the spectral gap. A preliminary Matlab implementation becomes faster than eig already for matrix sizes of a few thousand.Comment: 27 pages, 10 figure

    Minimizing Communication for Eigenproblems and the Singular Value Decomposition

    Full text link
    Algorithms have two costs: arithmetic and communication. The latter represents the cost of moving data, either between levels of a memory hierarchy, or between processors over a network. Communication often dominates arithmetic and represents a rapidly increasing proportion of the total cost, so we seek algorithms that minimize communication. In \cite{BDHS10} lower bounds were presented on the amount of communication required for essentially all O(n3)O(n^3)-like algorithms for linear algebra, including eigenvalue problems and the SVD. Conventional algorithms, including those currently implemented in (Sca)LAPACK, perform asymptotically more communication than these lower bounds require. In this paper we present parallel and sequential eigenvalue algorithms (for pencils, nonsymmetric matrices, and symmetric matrices) and SVD algorithms that do attain these lower bounds, and analyze their convergence and communication costs.Comment: 43 pages, 11 figure

    Very Large-Scale Singular Value Decomposition Using Tensor Train Networks

    Full text link
    We propose new algorithms for singular value decomposition (SVD) of very large-scale matrices based on a low-rank tensor approximation technique called the tensor train (TT) format. The proposed algorithms can compute several dominant singular values and corresponding singular vectors for large-scale structured matrices given in a TT format. The computational complexity of the proposed methods scales logarithmically with the matrix size under the assumption that both the matrix and the singular vectors admit low-rank TT decompositions. The proposed methods, which are called the alternating least squares for SVD (ALS-SVD) and modified alternating least squares for SVD (MALS-SVD), compute the left and right singular vectors approximately through block TT decompositions. The very large-scale optimization problem is reduced to sequential small-scale optimization problems, and each core tensor of the block TT decompositions can be updated by applying any standard optimization methods. The optimal ranks of the block TT decompositions are determined adaptively during iteration process, so that we can achieve high approximation accuracy. Extensive numerical simulations are conducted for several types of TT-structured matrices such as Hilbert matrix, Toeplitz matrix, random matrix with prescribed singular values, and tridiagonal matrix. The simulation results demonstrate the effectiveness of the proposed methods compared with standard SVD algorithms and TT-based algorithms developed for symmetric eigenvalue decomposition

    Localization for MCMC: sampling high-dimensional posterior distributions with local structure

    Get PDF
    We investigate how ideas from covariance localization in numerical weather prediction can be used in Markov chain Monte Carlo (MCMC) sampling of high-dimensional posterior distributions arising in Bayesian inverse problems. To localize an inverse problem is to enforce an anticipated "local" structure by (i) neglecting small off-diagonal elements of the prior precision and covariance matrices; and (ii) restricting the influence of observations to their neighborhood. For linear problems we can specify the conditions under which posterior moments of the localized problem are close to those of the original problem. We explain physical interpretations of our assumptions about local structure and discuss the notion of high dimensionality in local problems, which is different from the usual notion of high dimensionality in function space MCMC. The Gibbs sampler is a natural choice of MCMC algorithm for localized inverse problems and we demonstrate that its convergence rate is independent of dimension for localized linear problems. Nonlinear problems can also be tackled efficiently by localization and, as a simple illustration of these ideas, we present a localized Metropolis-within-Gibbs sampler. Several linear and nonlinear numerical examples illustrate localization in the context of MCMC samplers for inverse problems.Comment: 33 pages, 5 figure
    • …
    corecore