3,713 research outputs found

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Low Power Reversible Parallel Binary Adder/Subtractor

    Get PDF
    In recent years, Reversible Logic is becoming more and more prominent technology having its applications in Low Power CMOS, Quantum Computing, Nanotechnology, and Optical Computing. Reversibility plays an important role when energy efficient computations are considered. In this paper, Reversible eight-bit Parallel Binary Adder/Subtractor with Design I, Design II and Design III are proposed. In all the three design approaches, the full Adder and Subtractors are realized in a single unit as compared to only full Subtractor in the existing design. The performance analysis is verified using number reversible gates, Garbage input/outputs and Quantum Cost. It is observed that Reversible eight-bit Parallel Binary Adder/Subtractor with Design III is efficient compared to Design I, Design II and existing design.Comment: 12 pages,VLSICS Journa

    DDMF: An Efficient Decision Diagram Structure for Design Verification of Quantum Circuits under a Practical Restriction

    Get PDF
    Recently much attention has been paid to quantum circuit design to prepare for the future "quantum computation era." Like the conventional logic synthesis, it should be important to verify and analyze the functionalities of generated quantum circuits. For that purpose, we propose an efficient verification method for quantum circuits under a practical restriction. Thanks to the restriction, we can introduce an efficient verification scheme based on decision diagrams called Decision Diagrams for Matrix Functions (DDMFs). Then, we show analytically the advantages of our approach based on DDMFs over the previous verification techniques. In order to introduce DDMFs, we also introduce new concepts, quantum functions and matrix functions, which may also be interesting and useful on their own for designing quantum circuits.Comment: 15 pages, 14 figures, to appear IEICE Trans. Fundamentals, Vol. E91-A, No.1

    Fast equivalence checking of quantum circuits of Clifford gates

    Full text link
    Checking whether two quantum circuits are equivalent is important for the design and optimization of quantum-computer applications with real-world devices. We consider quantum circuits consisting of Clifford gates, a practically-relevant subset of all quantum operations which is large enough to exhibit quantum features such as entanglement and forms the basis of, for example, quantum-error correction and many quantum-network applications. We present a deterministic algorithm that is based on a folklore mathematical result and demonstrate that it is capable of outperforming previously considered state-of-the-art method. In particular, given two Clifford circuits as sequences of single- and two-qubit Clifford gates, the algorithm checks their equivalence in O(nm)O(n \cdot m) time in the number of qubits nn and number of elementary Clifford gates mm. Using the performant Stim simulator as backend, our implementation checks equivalence of quantum circuits with 1000 qubits (and a circuit depth of 10.000 gates) in \sim22 seconds and circuits with 100.000 qubits (depth 10) in \sim15 minutes, outperforming the existing SAT-based and path-integral based approaches by orders of magnitude. This approach shows that the correctness of application-relevant subsets of quantum operations can be verified up to large circuits in practice

    Verifying Results of the IBM Qiskit Quantum Circuit Compilation Flow

    Full text link
    Realizing a conceptual quantum algorithm on an actual physical device necessitates the algorithm's quantum circuit description to undergo certain transformations in order to adhere to all constraints imposed by the hardware. In this regard, the individual high-level circuit components are first synthesized to the supported low-level gate-set of the quantum computer, before being mapped to the target's architecture---utilizing several optimizations in order to improve the compilation result. Specialized tools for this complex task exist, e.g., IBM's Qiskit, Google's Cirq, Microsoft's QDK, or Rigetti's Forest. However, to date, the circuits resulting from these tools are hardly verified, which is mainly due to the immense complexity of checking if two quantum circuits indeed realize the same functionality. In this paper, we propose an efficient scheme for quantum circuit equivalence checking---specialized for verifying results of the IBM Qiskit quantum circuit compilation flow. To this end, we combine characteristics unique to quantum computing, e.g., its inherent reversibility, and certain knowledge about the compilation flow into a dedicated equivalence checking strategy. Experimental evaluations confirm that the proposed scheme allows to verify even large circuit instances with tens of thousands of operations within seconds or even less, whereas state-of-the-art techniques frequently time-out or require substantially more runtime. A corresponding open source implementation of the proposed method is publicly available at https://github.com/iic-jku/qcec.Comment: 10 pages, to be published at International Conference on Quantum Computing and Engineering (QCE20
    corecore