58 research outputs found

    Image and Video Coding Techniques for Ultra-low Latency

    Get PDF
    The next generation of wireless networks fosters the adoption of latency-critical applications such as XR, connected industry, or autonomous driving. This survey gathers implementation aspects of different image and video coding schemes and discusses their tradeoffs. Standardized video coding technologies such as HEVC or VVC provide a high compression ratio, but their enormous complexity sets the scene for alternative approaches like still image, mezzanine, or texture compression in scenarios with tight resource or latency constraints. Regardless of the coding scheme, we found inter-device memory transfers and the lack of sub-frame coding as limitations of current full-system and software-programmable implementations.publishedVersionPeer reviewe

    Architectures for Adaptive Low-Power Embedded Multimedia Systems

    Get PDF
    This Ph.D. thesis describes novel hardware/software architectures for adaptive low-power embedded multimedia systems. Novel techniques for run-time adaptive energy management are proposed, such that both HW & SW adapt together to react to the unpredictable scenarios. A complete power-aware H.264 video encoder was developed. Comparison with state-of-the-art demonstrates significant energy savings while meeting the performance constraint and keeping the video quality degradation unnoticeable

    Low complexity in-loop perceptual video coding

    Get PDF
    The tradition of broadcast video is today complemented with user generated content, as portable devices support video coding. Similarly, computing is becoming ubiquitous, where Internet of Things (IoT) incorporate heterogeneous networks to communicate with personal and/or infrastructure devices. Irrespective, the emphasises is on bandwidth and processor efficiencies, meaning increasing the signalling options in video encoding. Consequently, assessment for pixel differences applies uniform cost to be processor efficient, in contrast the Human Visual System (HVS) has non-uniform sensitivity based upon lighting, edges and textures. Existing perceptual assessments, are natively incompatible and processor demanding, making perceptual video coding (PVC) unsuitable for these environments. This research allows existing perceptual assessment at the native level using low complexity techniques, before producing new pixel-base image quality assessments (IQAs). To manage these IQAs a framework was developed and implemented in the high efficiency video coding (HEVC) encoder. This resulted in bit-redistribution, where greater bits and smaller partitioning were allocated to perceptually significant regions. Using a HEVC optimised processor the timing increase was < +4% and < +6% for video streaming and recording applications respectively, 1/3 of an existing low complexity PVC solution. Future work should be directed towards perceptual quantisation which offers the potential for perceptual coding gain

    Deep audio-visual speech recognition

    Get PDF
    Decades of research in acoustic speech recognition have led to systems that we use in our everyday life. However, even the most advanced speech recognition systems fail in the presence of noise. The degraded performance can be compensated by introducing visual speech information. However, Visual Speech Recognition (VSR) in naturalistic conditions is very challenging, in part due to the lack of architectures and annotations. This thesis contributes towards the problem of Audio-Visual Speech Recognition (AVSR) from different aspects. Firstly, we develop AVSR models for isolated words. In contrast to previous state-of-the-art methods that consists of a two-step approach, feature extraction and recognition, we present an End-to-End (E2E) approach inside a deep neural network, and this has led to a significant improvement in audio-only, visual-only and audio-visual experiments. We further replace Bi-directional Gated Recurrent Unit (BGRU) with Temporal Convolutional Networks (TCN) to greatly simplify the training procedure. Secondly, we extend our AVSR model for continuous speech by presenting a hybrid Connectionist Temporal Classification (CTC)/Attention model, that can be trained in an end-to-end manner. We then propose the addition of prediction-based auxiliary tasks to a VSR model and highlight the importance of hyper-parameter optimisation and appropriate data augmentations. Next, we present a self-supervised framework, Learning visual speech Representations from Audio via self-supervision (LiRA). Specifically, we train a ResNet+Conformer model to predict acoustic features from unlabelled visual speech, and find that this pre-trained model can be leveraged towards word-level and sentence-level lip-reading. We also investigate the Lombard effect influence in an end-to-end AVSR system, which is the first work using end-to-end deep architectures and presents results on unseen speakers. We show that even if a relatively small amount of Lombard speech is added to the training set then the performance in a real scenario, where noisy Lombard speech is present, can be significantly improved. Lastly, we propose a detection method against adversarial examples in an AVSR system, where the strong correlation between audio and visual streams is leveraged. The synchronisation confidence score is leveraged as a proxy for audio-visual correlation and based on it, we can detect adversarial attacks. We apply recent adversarial attacks on two AVSR models and the experimental results demonstrate that the proposed approach is an effective way for detecting such attacks.Open Acces

    Understanding Video Transformers for Segmentation: A Survey of Application and Interpretability

    Full text link
    Video segmentation encompasses a wide range of categories of problem formulation, e.g., object, scene, actor-action and multimodal video segmentation, for delineating task-specific scene components with pixel-level masks. Recently, approaches in this research area shifted from concentrating on ConvNet-based to transformer-based models. In addition, various interpretability approaches have appeared for transformer models and video temporal dynamics, motivated by the growing interest in basic scientific understanding, model diagnostics and societal implications of real-world deployment. Previous surveys mainly focused on ConvNet models on a subset of video segmentation tasks or transformers for classification tasks. Moreover, component-wise discussion of transformer-based video segmentation models has not yet received due focus. In addition, previous reviews of interpretability methods focused on transformers for classification, while analysis of video temporal dynamics modelling capabilities of video models received less attention. In this survey, we address the above with a thorough discussion of various categories of video segmentation, a component-wise discussion of the state-of-the-art transformer-based models, and a review of related interpretability methods. We first present an introduction to the different video segmentation task categories, their objectives, specific challenges and benchmark datasets. Next, we provide a component-wise review of recent transformer-based models and document the state of the art on different video segmentation tasks. Subsequently, we discuss post-hoc and ante-hoc interpretability methods for transformer models and interpretability methods for understanding the role of the temporal dimension in video models. Finally, we conclude our discussion with future research directions

    Deep Video Compression

    Get PDF

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area

    Contributions to reconfigurable video coding and low bit rate video coding

    Get PDF
    In this PhD Thesis, two different issues on video coding are stated and their corresponding proposed solutions discussed. In the first place, some problems of the use of video coding standards are identi ed and the potential of new reconfigurable platforms is put to the test. Specifically, the proposal from MPEG for a Reconfigurable Video Coding (RVC) standard is compared with a more ambitious proposal for Fully Configurable Video Coding (FCVC). In both cases, the objective is to nd a way for the definition of new video codecs without the concurrence of a classical standardization process, in order to reduce the time-to-market of new ideas while maintaining the proper interoperability between codecs. The main difference between these approaches is the ability of FCVC to reconfigure each program line in the encoder and decoder definition, while RVC only enables to conform the codec description from a database of standardized functional units. The proof of concept carried out in the FCVC prototype enabled to propose the incorporation of some of the FCVC capabilities in future versions of the RVC standard. The second part of the Thesis deals with the design and implementation of a filtering algorithm in a hybrid video encoder in order to simplify the high frequencies present in the prediction residue, which are the most expensive for the encoder in terms of output bit rate. By means of this filtering, the quantization scale employed by the video encoder in low bit rate is kept in reasonable values and the risk of appearance of encoding artifacts is reduced. The proposed algorithm includes a block for filter control that determines the proper amount of filtering from the encoder operating point and the characteristics of the sequence to be processed. This filter control is tuned according to perceptual considerations related with overall subjective quality assessment. Finally, the complete algorithm was tested by means of a standard subjective video quality assessment test, and the results showed a noticeable improvement in the quality score with respect to the non-filtered version, confirming that the proposed method reduces the presence of harmful low bit rate artifacts

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area

    Multimodal machine learning for intelligent mobility

    Get PDF
    Scientific problems are solved by finding the optimal solution for a specific task. Some problems can be solved analytically while other problems are solved using data driven methods. The use of digital technologies to improve the transportation of people and goods, which is referred to as intelligent mobility, is one of the principal beneficiaries of data driven solutions. Autonomous vehicles are at the heart of the developments that propel Intelligent Mobility. Due to the high dimensionality and complexities involved in real-world environments, it needs to become commonplace for intelligent mobility to use data-driven solutions. As it is near impossible to program decision making logic for every eventuality manually. While recent developments of data-driven solutions such as deep learning facilitate machines to learn effectively from large datasets, the application of techniques within safety-critical systems such as driverless cars remain scarce.Autonomous vehicles need to be able to make context-driven decisions autonomously in different environments in which they operate. The recent literature on driverless vehicle research is heavily focused only on road or highway environments but have discounted pedestrianized areas and indoor environments. These unstructured environments tend to have more clutter and change rapidly over time. Therefore, for intelligent mobility to make a significant impact on human life, it is vital to extend the application beyond the structured environments. To further advance intelligent mobility, researchers need to take cues from multiple sensor streams, and multiple machine learning algorithms so that decisions can be robust and reliable. Only then will machines indeed be able to operate in unstructured and dynamic environments safely. Towards addressing these limitations, this thesis investigates data driven solutions towards crucial building blocks in intelligent mobility. Specifically, the thesis investigates multimodal sensor data fusion, machine learning, multimodal deep representation learning and its application of intelligent mobility. This work demonstrates that mobile robots can use multimodal machine learning to derive driver policy and therefore make autonomous decisions.To facilitate autonomous decisions necessary to derive safe driving algorithms, we present an algorithm for free space detection and human activity recognition. Driving these decision-making algorithms are specific datasets collected throughout this study. They include the Loughborough London Autonomous Vehicle dataset, and the Loughborough London Human Activity Recognition dataset. The datasets were collected using an autonomous platform design and developed in house as part of this research activity. The proposed framework for Free-Space Detection is based on an active learning paradigm that leverages the relative uncertainty of multimodal sensor data streams (ultrasound and camera). It utilizes an online learning methodology to continuously update the learnt model whenever the vehicle experiences new environments. The proposed Free Space Detection algorithm enables an autonomous vehicle to self-learn, evolve and adapt to new environments never encountered before. The results illustrate that online learning mechanism is superior to one-off training of deep neural networks that require large datasets to generalize to unfamiliar surroundings. The thesis takes the view that human should be at the centre of any technological development related to artificial intelligence. It is imperative within the spectrum of intelligent mobility where an autonomous vehicle should be aware of what humans are doing in its vicinity. Towards improving the robustness of human activity recognition, this thesis proposes a novel algorithm that classifies point-cloud data originated from Light Detection and Ranging sensors. The proposed algorithm leverages multimodality by using the camera data to identify humans and segment the region of interest in point cloud data. The corresponding 3-dimensional data was converted to a Fisher Vector Representation before being classified by a deep Convolutional Neural Network. The proposed algorithm classifies the indoor activities performed by a human subject with an average precision of 90.3%. When compared to an alternative point cloud classifier, PointNet[1], [2], the proposed framework out preformed on all classes. The developed autonomous testbed for data collection and algorithm validation, as well as the multimodal data-driven solutions for driverless cars, is the major contributions of this thesis. It is anticipated that these results and the testbed will have significant implications on the future of intelligent mobility by amplifying the developments of intelligent driverless vehicles.</div
    • …
    corecore