181 research outputs found

    Fast determination of the optimal rotational matrix for macromolecular superpositions

    Get PDF
    Finding the rotational matrix that minimizes the sum of squared deviations between two vectors is an important problem in bioinformatics and crystallography. Traditional algorithms involve the inversion or decomposition of a 3 × 3 or 4 × 4 matrix, which can be computationally expensive and numerically unstable in certain cases. Here, we present a simple and robust algorithm to rapidly determine the optimal rotation using a Newton-Raphson quaternion-based method and an adjoint matrix. Our method is at least an order of magnitude more efficient than conventional inversion/decomposition methods, and it should be particularly useful for high-throughput analyses of molecular conformations. © 2009 Wiley Periodicals, Inc. J Comput Chem, 201

    GPU-Q-J, a fast method for calculating root mean square deviation (RMSD) after optimal superposition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calculation of the root mean square deviation (RMSD) between the atomic coordinates of two optimally superposed structures is a basic component of structural comparison techniques. We describe a quaternion based method, GPU-Q-J, that is stable with single precision calculations and suitable for graphics processor units (GPUs). The application was implemented on an ATI 4770 graphics card in C/C++ and Brook+ in Linux where it was 260 to 760 times faster than existing unoptimized CPU methods. Source code is available from the Compbio website <url>http://software.compbio.washington.edu/misc/downloads/st_gpu_fit/</url> or from the author LHH.</p> <p>Findings</p> <p>The Nutritious Rice for the World Project (NRW) on World Community Grid predicted <it>de novo</it>, the structures of over 62,000 small proteins and protein domains returning a total of 10 billion candidate structures. Clustering ensembles of structures on this scale requires calculation of large similarity matrices consisting of RMSDs between each pair of structures in the set. As a real-world test, we calculated the matrices for 6 different ensembles from NRW. The GPU method was 260 times faster that the fastest existing CPU based method and over 500 times faster than the method that had been previously used.</p> <p>Conclusions</p> <p>GPU-Q-J is a significant advance over previous CPU methods. It relieves a major bottleneck in the clustering of large numbers of structures for NRW. It also has applications in structure comparison methods that involve multiple superposition and RMSD determination steps, particularly when such methods are applied on a proteome and genome wide scale.</p

    Robust probabilistic superposition and comparison of protein structures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein structure comparison is a central issue in structural bioinformatics. The standard dissimilarity measure for protein structures is the root mean square deviation (RMSD) of representative atom positions such as α-carbons. To evaluate the RMSD the structures under comparison must be superimposed optimally so as to minimize the RMSD. How to evaluate optimal fits becomes a matter of debate, if the structures contain regions which differ largely - a situation encountered in NMR ensembles and proteins undergoing large-scale conformational transitions.</p> <p>Results</p> <p>We present a probabilistic method for robust superposition and comparison of protein structures. Our method aims to identify the largest structurally invariant core. To do so, we model non-rigid displacements in protein structures with outlier-tolerant probability distributions. These distributions exhibit heavier tails than the Gaussian distribution underlying standard RMSD minimization and thus accommodate highly divergent structural regions. The drawback is that under a heavy-tailed model analytical expressions for the optimal superposition no longer exist. To circumvent this problem we work with a scale mixture representation, which implies a weighted RMSD. We develop two iterative procedures, an Expectation Maximization algorithm and a Gibbs sampler, to estimate the local weights, the optimal superposition, and the parameters of the heavy-tailed distribution. Applications demonstrate that heavy-tailed models capture differences between structures undergoing substantial conformational changes and can be used to assess the precision of NMR structures. By comparing Bayes factors we can automatically choose the most adequate model. Therefore our method is parameter-free.</p> <p>Conclusions</p> <p>Heavy-tailed distributions are well-suited to describe large-scale conformational differences in protein structures. A scale mixture representation facilitates the fitting of these distributions and enables outlier-tolerant superposition.</p

    Оптический метод регистрации пространственного положения хирургического инструмента в компьютерной навигационной системе

    Get PDF
    В работе рассматриваются основные составляющие хирургической навигационной системы. Такие системы состоят из подсистемы визуализации, регистрации положения. Одна из основных частей компьютерной навигационной системы – подсистема регистрации положения. Рассмотрены основные этапы определения положения хирургического инструмента в пространстве. Разработаны соответствующие части хирургической навигационной системы.The paper considers the main components of a surgical navigation system. These systems are composed of subsystems visualization and determination of position. Subsystem determination of a po-sition is a one of the main parts of computer navigation system. Were considered the main stages of determination the surgical instrument in space. Have been developed the suitable parts of the surgical navigation system

    Protein Structure Determination by Assembling Super-Secondary Structure Motifs Using Pseudocontact Shifts

    Get PDF
    Computational and nuclear magnetic resonance hybrid approaches provide efficient tools for 3D structure determination of small proteins, but currently available algorithms struggle to perform with larger proteins. Here we demonstrate a new computational algorithm that assembles the 3D structure of a protein from its constituent super-secondary structural motifs (Smotifs) with the help of pseudocontact shift (PCS) restraints for backbone amide protons, where the PCSs are produced from different metal centers. The algorithm, DINGO-PCS (3D assembly of Individual Smotifs to Near-native Geometry as Orchestrated by PCSs), employs the PCSs to recognize, orient, and assemble the constituent Smotifs of the target protein without any other experimental data or computational force fields. Using a universal Smotif database, the DINGO-PCS algorithm exhaustively enumerates any given Smotif. We benchmarked the program against ten different protein targets ranging from 100 to 220 residues with different topologies. For nine of these targets, the method was able to identify near-native Smotifs.Financial support to T.H. and G.O. by the Australian Research Council(DP150100383) is gratefully acknowledged

    Effects of Flexibility in Coarse-Grained Models for Bovine Serum Albumin and Immunoglobulin G

    Get PDF
    We construct a coarse-grained, structure-based, low-resolution, 6-bead flexible model of bovine serum albumin (BSA, PDB: 4F5S), which is a popular example of a globular protein in biophysical research. The model is obtained via direct Boltzmann inversion using all-atom simulations of a single molecule, and its particular form is selected from a large pool of 6-bead coarse-grained models using two suitable metrics that quantify the agreement in the distribution of collective coordinates between all-atom and coarse-grained Brownian dynamics simulations of solutions in the dilute limit. For immunoglobulin G (IgG), a similar structure-based 12-bead model has been introduced in the literature [Chaudhri et al., J. Phys. Chem. B 116, 8045 (2012)] and is employed here to compare findings for the compact BSA molecule and the more anisotropic IgG molecule. We define several modified coarse-grained models of BSA and IgG, which differ in their internal constraints and thus account for a variation of flexibility. We study denser solutions of the coarse-grained models with purely repulsive molecules (achievable by suitable salt conditions) and address the effect of packing and flexibility on dynamic and static behavior. Translational and rotational self-diffusivity is enhanced for more elastic models. Finally, we discuss a number of effective sphere sizes for the BSA molecule, which can be defined from its static and dynamic properties. Here, it is found that the effective sphere diameters lie between 4.9 and 6.1 nm, corresponding to a relative spread of about ±10% around a mean of 5.5 nm

    Simulations of the Alternating Access Mechanism of the Sodium Symporter Mhp1

    Get PDF
    AbstractSodium coupled cotransporters of the five-helix inverted repeat (5HIR) superfamily use an alternating access mechanism to transport a myriad of small molecules across the cell membrane. One of the primary steps in this mechanism is the conformational transition from a state poised to bind extracellular substrates to a state that is competent to deliver substrate to the cytoplasm. Here, we construct a coarse-grained model of the 5HIR benzylhydantoin transporter Mhp1 that incorporates experimental structures of the outward- and inward-open states to investigate the mechanism of this conformational change. Using the weighted ensemble path-sampling method, we rigorously sample the outward- to inward-facing transition path ensemble. The transition path ensemble reveals a heterogeneous set of pathways connecting the two states and identifies two modes of transport: one consistent with a strict alternating access mechanism and another where decoupling of the inner and outer gates causes the transient formation of a continuous permeation pathway through the transporter. We also show that the conformational switch between the outward- and inward-open states results from rigid body motions of the hash motif relative to the substrate bundle, supporting the rocking bundle hypothesis. Finally, our methodology provides the groundwork for more chemically detailed investigations of the alternating mechanism

    Rational Design of Small-Molecule Inhibitors of Protein-Protein Interactions: Application to the Oncogenic c-Myc/Max Interaction

    Get PDF
    Protein-protein interactions (PPIs) constitute an emerging class of targets for pharmaceutical intervention pursued by both industry and academia. Despite their fundamental role in many biological processes and diseases such as cancer, PPIs are still largely underrepresented in today's drug discovery. This dissertation describes novel computational approaches developed to facilitate the discovery/design of small-molecule inhibitors of PPIs, using the oncogenic c-Myc/Max interaction as a case study.First, we critically review current approaches and limitations to the discovery of small-molecule inhibitors of PPIs and we provide examples from the literature.Second, we examine the role of protein flexibility in molecular recognition and binding, and we review recent advances in the application of Elastic Network Models (ENMs) to modeling the global conformational changes of proteins observed upon ligand binding. The agreement between predicted soft modes of motions and structural changes experimentally observed upon ligand binding supports the view that ligand binding is facilitated, if not enabled, by the intrinsic (pre-existing) motions thermally accessible to the protein in the unliganded form.Third, we develop a new method for generating models of the bioactive conformations of molecules in the absence of protein structure, by identifying a set of conformations (from different molecules) that are most mutually similar in terms of both their shape and chemical features. We show how to solve the problem using an Integer Linear Programming formulation of the maximum-edge weight clique problem. In addition, we present the application of the method to known c-Myc/Max inhibitors.Fourth, we propose an innovative methodology for molecular mimicry design. We show how the structure of the c-Myc/Max complex was exploited to designing compounds that mimic the binding interactions that Max makes with the leucine zipper domain of c-Myc.In summary, the approaches described in this dissertation constitute important contributions to the fields of computational biology and computer-aided drug discovery, which combine biophysical insights and computational methods to expedite the discovery of novel inhibitors of PPIs
    corecore