7,710 research outputs found

    Deep Mean-Shift Priors for Image Restoration

    Full text link
    In this paper we introduce a natural image prior that directly represents a Gaussian-smoothed version of the natural image distribution. We include our prior in a formulation of image restoration as a Bayes estimator that also allows us to solve noise-blind image restoration problems. We show that the gradient of our prior corresponds to the mean-shift vector on the natural image distribution. In addition, we learn the mean-shift vector field using denoising autoencoders, and use it in a gradient descent approach to perform Bayes risk minimization. We demonstrate competitive results for noise-blind deblurring, super-resolution, and demosaicing.Comment: NIPS 201

    Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections

    Full text link
    In this paper, we propose a very deep fully convolutional encoding-decoding framework for image restoration such as denoising and super-resolution. The network is composed of multiple layers of convolution and de-convolution operators, learning end-to-end mappings from corrupted images to the original ones. The convolutional layers act as the feature extractor, which capture the abstraction of image contents while eliminating noises/corruptions. De-convolutional layers are then used to recover the image details. We propose to symmetrically link convolutional and de-convolutional layers with skip-layer connections, with which the training converges much faster and attains a higher-quality local optimum. First, The skip connections allow the signal to be back-propagated to bottom layers directly, and thus tackles the problem of gradient vanishing, making training deep networks easier and achieving restoration performance gains consequently. Second, these skip connections pass image details from convolutional layers to de-convolutional layers, which is beneficial in recovering the original image. Significantly, with the large capacity, we can handle different levels of noises using a single model. Experimental results show that our network achieves better performance than all previously reported state-of-the-art methods.Comment: Accepted to Proc. Advances in Neural Information Processing Systems (NIPS'16). Content of the final version may be slightly different. Extended version is available at http://arxiv.org/abs/1606.0892

    Deep Learning for Single Image Super-Resolution: A Brief Review

    Get PDF
    Single image super-resolution (SISR) is a notoriously challenging ill-posed problem, which aims to obtain a high-resolution (HR) output from one of its low-resolution (LR) versions. To solve the SISR problem, recently powerful deep learning algorithms have been employed and achieved the state-of-the-art performance. In this survey, we review representative deep learning-based SISR methods, and group them into two categories according to their major contributions to two essential aspects of SISR: the exploration of efficient neural network architectures for SISR, and the development of effective optimization objectives for deep SISR learning. For each category, a baseline is firstly established and several critical limitations of the baseline are summarized. Then representative works on overcoming these limitations are presented based on their original contents as well as our critical understandings and analyses, and relevant comparisons are conducted from a variety of perspectives. Finally we conclude this review with some vital current challenges and future trends in SISR leveraging deep learning algorithms.Comment: Accepted by IEEE Transactions on Multimedia (TMM
    • …
    corecore