2,813 research outputs found

    Evaluation codes defined by finite families of plane valuations at infinity

    Get PDF
    We construct evaluation codes given by weight functions defined over polynomial rings in m a parts per thousand yen 2 indeterminates. These weight functions are determined by sets of m-1 weight functions over polynomial rings in two indeterminates defined by plane valuations at infinity. Well-suited families in totally ordered commutative groups are an important tool in our procedureSupported by Spain Ministry of Education MTM2007-64704 and Bancaixa P1-1B2009-03. The authors thank to the referees for their valuable suggestions.Galindo Pastor, C.; Monserrat Delpalillo, FJ. (2014). Evaluation codes defined by finite families of plane valuations at infinity. Designs, Codes and Cryptography. 70(1-2):189-213. https://doi.org/10.1007/s10623-012-9738-7S189213701-2Abhyankar S.S.: Local uniformization on algebraic surfaces over ground field of characteristic p ≠ 0. Ann. Math. 63, 491–526 (1956)Abhyankar S.S.: On the valuations centered in a local domain. Am. J. Math. 78, 321–348 (1956)Abhyankar S.S.: Lectures on expansion techniques in algebraic geometry. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 57. Tata Institute of Fundamental Research, Bombay (1977).Abhyankar S.S.: On the semigroup of a meromorphic curve (part I). In: Proceedings of the International Symposium on Algebraic Geometry (Kyoto) Kinokunio Tokio, pp. 249–414 (1977).Abhyankar S.S., Moh T.T.: Newton-Puiseux expansion and generalized Tschirnhausen transformation (I). J. Reine Angew. Math. 260, 47–83 (1973)Abhyankar S.S., Moh T.T.: Newton-Puiseux expansion and generalized Tschirnhausen transformation (II). J. Reine Angew. Math. 261, 29–54 (1973)Berlekamp E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968)Campillo A., Farrán J.I.: Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models. Finite Fields Appl. 6, 71–92 (2000)Carvalho C., Munuera C., Silva E., Torres F.: Near orders and codes. IEEE Trans. Inf. Theory 53, 1919–1924 (2007)Decker W., Greuel G.M., Pfister G., Schöenemann H.: Singular 3.1.3, a computer algebra system for polynomial computations (2011) http://www.singular.uni-kl.de .Feng G.L., Rao T.R.N.: Decoding of algebraic geometric codes up to the designed minimum distance. IEEE Trans. Inf. Theory 39, 37–45 (1993)Feng G.L., Rao T.R.N.: A simple approach for construction of algebraic-geometric codes from affine plane curves. IEEE Trans. Inf. Theory 40, 1003–1012 (1994)Feng G.L., Rao T.R.N.: Improved geometric Goppa codes, part I: basic theory. IEEE Trans. Inf. Theory 41, 1678–1693 (1995)Fujimoto M., Suzuki M.: Construction of affine plane curves with one place at infinity. Osaka J. Math. 39(4), 1005–1027 (2002)Galindo C.: Plane valuations and their completions. Commun. Algebra 23(6), 2107–2123 (1995)Galindo C., Monserrat F.: δ-sequences and evaluation codes defined by plane valuations at infinity. Proc. Lond. Math. Soc. 98, 714–740 (2009)Galindo C., Monserrat F.: The Abhyankar-Moh theorem for plane valuations at infinity. Preprint 2010. ArXiv:0910.2613v2.Galindo C., Sanchis M.: Evaluation codes and plane valuations. Des. Codes Cryptogr. 41(2), 199–219 (2006)Geil O.: Codes based on an Fq{\mathbb{F}_q} -algebra. PhD Thesis, Aalborg University, June (2000).Geil O., Matsumoto R.: Generalized Sudan’s list decoding for order domain codes. Lecture Notes in Computer Science, vol. 4851, pp. 50–59 (2007)Geil O., Pellikaan R.: On the structure of order domains. Finite Fields Appl. 8, 369–396 (2002)Goppa V.D.: Codes associated with divisors. Probl. Inf. Transm. 13, 22–26 (1997)Goppa V.D.: Geometry and Codes. Mathematics and Its Applications, vol. 24. Kluwer, Dordrecht (1991).Greco S., Kiyek K.: General elements in complete ideals and valuations centered at a two-dimensional regular local ring. In: Algebra, Arithmetic, and Geometry, with Applications, pp. 381–455. Springer, Berlin (2003).Høholdt T., van Lint J.H., Pellikaan R.: Algebraic geometry codes. In: Handbook of Coding Theory, vol. 1, pp. 871–961. Elsevier, Amsterdam (1998).Jensen C.D.: Fast decoding of codes from algebraic geometry. IEEE Trans. Inf. Theory 40, 223–230 (1994)Justesen J., Larsen K.J., Jensen H.E., Havemose A., Høholdt T.: Construction and decoding of a class of algebraic geometric codes. IEEE Trans. Inf. Theory 35, 811–821 (1989)Justesen J., Larsen K.J., Jensen H.E., Høholdt T.: Fast decoding of codes from algebraic plane curves. IEEE Trans. Inf. Theory 38, 111–119 (1992)Massey J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15, 122–127 (1969)Matsumoto R.: Miura’s generalization of one point AG codes is equivalent to Høholdt, van Lint and Pellikaan’s generalization. IEICE Trans. Fundam. E82-A(10), 2007–2010 (1999)Moghaddam M.: Realization of a certain class of semigroups as value semigroups of valuations. Bull. Iran. Math. Soc. 35, 61–95 (2009)O’Sullivan M.E.: Decoding of codes defined by a single point on a curve. IEEE Trans. Inf. Theory 41, 1709–1719 (1995)O’Sullivan M.E.: New codes for the Belekamp-Massey-Sakata algorithm. Finite Fields Appl. 7, 293–317 (2001)Pinkham H.: Séminaire sur les singularités des surfaces (Demazure-Pinkham-Teissier), Course donné au Centre de Math. de l’Ecole Polytechnique (1977–1978).Sakata S.: Extension of the Berlekamp-Massey algorithm to N dimensions. Inf. Comput. 84, 207–239 (1990)Sakata S., Jensen H.E., Høholdt T.: Generalized Berlekamp-Massey decoding of algebraic geometric codes up to half the Feng-Rao bound. IEEE Trans. Inf. Theory 41, 1762–1768 (1995)Sakata S., Justesen J., Madelung Y., Jensen H.E., Høholdt T.: Fast decoding of algebraic geometric codes up to the designed minimum distance. IEEE Trans. Inf. Theory 41, 1672–1677 (1995)Sathaye A.: On planar curves. Am. J. Math. 99(5), 1105–1135 (1977)Shannon C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 and 623–656 (1948).Skorobogatov A.N., Vlădut S.G.: On the decoding of algebraic geometric codes. IEEE Trans. Inf. Theory 36, 1051–1060 (1990)Spivakovsky M.: Valuations in function fields of surfaces. Am. J. Math. 112, 107–156 (1990)Suzuki M.: Affine plane curves with one place at infinity. Ann. Inst. Fourier 49(2), 375–404 (1999)Tsfasman S.G., Vlăduţ T.: Zink, modular curves, Shimura curves and Goppa codes, better than Varshamov–Gilbert bound. Math. Nachr. 109, 21–28 (1982)Vlăduţ S.G., Manin Y.I. Linear codes and modular curves. In: Current problems in mathematics, vol. 25, pp. 209–257. Akad. Nauk SSSR Vseoyuz, Moscow (1984).Zariski O.: The reduction of the singularities of an algebraic surface. Ann. Math. 40, 639–689 (1939)Zariski O.: Local uniformization on algebraic varieties. Ann. Math. 41, 852–896 (1940)Zariski O., Samuel P.(1960) Commutative Algebra, vol. II. Springer, Berlin

    Subquadratic time encodable codes beating the Gilbert-Varshamov bound

    Full text link
    We construct explicit algebraic geometry codes built from the Garcia-Stichtenoth function field tower beating the Gilbert-Varshamov bound for alphabet sizes at least 192. Messages are identied with functions in certain Riemann-Roch spaces associated with divisors supported on multiple places. Encoding amounts to evaluating these functions at degree one places. By exploiting algebraic structures particular to the Garcia-Stichtenoth tower, we devise an intricate deterministic \omega/2 < 1.19 runtime exponent encoding and 1+\omega/2 < 2.19 expected runtime exponent randomized (unique and list) decoding algorithms. Here \omega < 2.373 is the matrix multiplication exponent. If \omega = 2, as widely believed, the encoding and decoding runtimes are respectively nearly linear and nearly quadratic. Prior to this work, encoding (resp. decoding) time of code families beating the Gilbert-Varshamov bound were quadratic (resp. cubic) or worse

    List Decoding Algorithm based on Voting in Groebner Bases for General One-Point AG Codes

    Get PDF
    We generalize the unique decoding algorithm for one-point AG codes over the Miura-Kamiya Cab curves proposed by Lee, Bras-Amor\'os and O'Sullivan (2012) to general one-point AG codes, without any assumption. We also extend their unique decoding algorithm to list decoding, modify it so that it can be used with the Feng-Rao improved code construction, prove equality between its error correcting capability and half the minimum distance lower bound by Andersen and Geil (2008) that has not been done in the original proposal except for one-point Hermitian codes, remove the unnecessary computational steps so that it can run faster, and analyze its computational complexity in terms of multiplications and divisions in the finite field. As a unique decoding algorithm, the proposed one is empirically and theoretically as fast as the BMS algorithm for one-point Hermitian codes. As a list decoding algorithm, extensive experiments suggest that it can be much faster for many moderate size/usual inputs than the algorithm by Beelen and Brander (2010). It should be noted that as a list decoding algorithm the proposed method seems to have exponential worst-case computational complexity while the previous proposals (Beelen and Brander, 2010; Guruswami and Sudan, 1999) have polynomial ones, and that the proposed method is expected to be slower than the previous proposals for very large/special inputs.Comment: Accepted for publication in J. Symbolic Computation. LaTeX2e article.cls, 42 pages, 4 tables, no figures. Ver. 6 added an illustrative example of the algorithm executio

    Cryptanalysis of McEliece Cryptosystem Based on Algebraic Geometry Codes and their subcodes

    Full text link
    We give polynomial time attacks on the McEliece public key cryptosystem based either on algebraic geometry (AG) codes or on small codimensional subcodes of AG codes. These attacks consist in the blind reconstruction either of an Error Correcting Pair (ECP), or an Error Correcting Array (ECA) from the single data of an arbitrary generator matrix of a code. An ECP provides a decoding algorithm that corrects up to d1g2\frac{d^*-1-g}{2} errors, where dd^* denotes the designed distance and gg denotes the genus of the corresponding curve, while with an ECA the decoding algorithm corrects up to d12\frac{d^*-1}{2} errors. Roughly speaking, for a public code of length nn over Fq\mathbb F_q, these attacks run in O(n4log(n))O(n^4\log (n)) operations in Fq\mathbb F_q for the reconstruction of an ECP and O(n5)O(n^5) operations for the reconstruction of an ECA. A probabilistic shortcut allows to reduce the complexities respectively to O(n3+εlog(n))O(n^{3+\varepsilon} \log (n)) and O(n4+ε)O(n^{4+\varepsilon}). Compared to the previous known attack due to Faure and Minder, our attack is efficient on codes from curves of arbitrary genus. Furthermore, we investigate how far these methods apply to subcodes of AG codes.Comment: A part of the material of this article has been published at the conferences ISIT 2014 with title "A polynomial time attack against AG code based PKC" and 4ICMCTA with title "Crypt. of PKC that use subcodes of AG codes". This long version includes detailed proofs and new results: the proceedings articles only considered the reconstruction of ECP while we discuss here the reconstruction of EC
    corecore