1,912 research outputs found

    Fast Consensus under Eventually Stabilizing Message Adversaries

    Full text link
    This paper is devoted to deterministic consensus in synchronous dynamic networks with unidirectional links, which are under the control of an omniscient message adversary. Motivated by unpredictable node/system initialization times and long-lasting periods of massive transient faults, we consider message adversaries that guarantee periods of less erratic message loss only eventually: We present a tight bound of 2D+12D+1 for the termination time of consensus under a message adversary that eventually guarantees a single vertex-stable root component with dynamic network diameter DD, as well as a simple algorithm that matches this bound. It effectively halves the termination time 4D+14D+1 achieved by an existing consensus algorithm, which also works under our message adversary. We also introduce a generalized, considerably stronger variant of our message adversary, and show that our new algorithm, unlike the existing one, still works correctly under it.Comment: 13 pages, 5 figures, updated reference

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Distributed Algorithmic Foundations of Dynamic Networks

    Get PDF

    Stabilizing Consensus with Many Opinions

    Full text link
    We consider the following distributed consensus problem: Each node in a complete communication network of size nn initially holds an \emph{opinion}, which is chosen arbitrarily from a finite set Σ\Sigma. The system must converge toward a consensus state in which all, or almost all nodes, hold the same opinion. Moreover, this opinion should be \emph{valid}, i.e., it should be one among those initially present in the system. This condition should be met even in the presence of an adaptive, malicious adversary who can modify the opinions of a bounded number of nodes in every round. We consider the \emph{3-majority dynamics}: At every round, every node pulls the opinion from three random neighbors and sets his new opinion to the majority one (ties are broken arbitrarily). Let kk be the number of valid opinions. We show that, if knαk \leqslant n^{\alpha}, where α\alpha is a suitable positive constant, the 3-majority dynamics converges in time polynomial in kk and logn\log n with high probability even in the presence of an adversary who can affect up to o(n)o(\sqrt{n}) nodes at each round. Previously, the convergence of the 3-majority protocol was known for Σ=2|\Sigma| = 2 only, with an argument that is robust to adversarial errors. On the other hand, no anonymous, uniform-gossip protocol that is robust to adversarial errors was known for Σ>2|\Sigma| > 2

    Liveness of Randomised Parameterised Systems under Arbitrary Schedulers (Technical Report)

    Full text link
    We consider the problem of verifying liveness for systems with a finite, but unbounded, number of processes, commonly known as parameterised systems. Typical examples of such systems include distributed protocols (e.g. for the dining philosopher problem). Unlike the case of verifying safety, proving liveness is still considered extremely challenging, especially in the presence of randomness in the system. In this paper we consider liveness under arbitrary (including unfair) schedulers, which is often considered a desirable property in the literature of self-stabilising systems. We introduce an automatic method of proving liveness for randomised parameterised systems under arbitrary schedulers. Viewing liveness as a two-player reachability game (between Scheduler and Process), our method is a CEGAR approach that synthesises a progress relation for Process that can be symbolically represented as a finite-state automaton. The method is incremental and exploits both Angluin-style L*-learning and SAT-solvers. Our experiments show that our algorithm is able to prove liveness automatically for well-known randomised distributed protocols, including Lehmann-Rabin Randomised Dining Philosopher Protocol and randomised self-stabilising protocols (such as the Israeli-Jalfon Protocol). To the best of our knowledge, this is the first fully-automatic method that can prove liveness for randomised protocols.Comment: Full version of CAV'16 pape

    Topological Characterization of Consensus Solvability in Directed Dynamic Networks

    Full text link
    Consensus is one of the most fundamental problems in distributed computing. This paper studies the consensus problem in a synchronous dynamic directed network, in which communication is controlled by an oblivious message adversary. The question when consensus is possible in this model has already been studied thoroughly in the literature from a combinatorial perspective, and is known to be challenging. This paper presents a topological perspective on consensus solvability under oblivious message adversaries, which provides interesting new insights. Our main contribution is a topological characterization of consensus solvability, which also leads to explicit decision procedures. Our approach is based on the novel notion of a communication pseudosphere, which can be seen as the message-passing analog of the well-known standard chromatic subdivision for wait-free shared memory systems. We further push the elegance and expressiveness of the "geometric" reasoning enabled by the topological approach by dealing with uninterpreted complexes, which considerably reduce the size of the protocol complex, and by labeling facets with information flow arrows, which give an intuitive meaning to the implicit epistemic status of the faces in a protocol complex
    corecore