6,434 research outputs found

    Fast Computation of Abelian Runs

    Full text link
    Given a word ww and a Parikh vector P\mathcal{P}, an abelian run of period P\mathcal{P} in ww is a maximal occurrence of a substring of ww having abelian period P\mathcal{P}. Our main result is an online algorithm that, given a word ww of length nn over an alphabet of cardinality σ\sigma and a Parikh vector P\mathcal{P}, returns all the abelian runs of period P\mathcal{P} in ww in time O(n)O(n) and space O(σ+p)O(\sigma+p), where pp is the norm of P\mathcal{P}, i.e., the sum of its components. We also present an online algorithm that computes all the abelian runs with periods of norm pp in ww in time O(np)O(np), for any given norm pp. Finally, we give an O(n2)O(n^2)-time offline randomized algorithm for computing all the abelian runs of ww. Its deterministic counterpart runs in O(n2logâĄÏƒ)O(n^2\log\sigma) time.Comment: To appear in Theoretical Computer Scienc

    Identifying all abelian periods of a string in quadratic time and relevant problems

    Full text link
    Abelian periodicity of strings has been studied extensively over the last years. In 2006 Constantinescu and Ilie defined the abelian period of a string and several algorithms for the computation of all abelian periods of a string were given. In contrast to the classical period of a word, its abelian version is more flexible, factors of the word are considered the same under any internal permutation of their letters. We show two O(|y|^2) algorithms for the computation of all abelian periods of a string y. The first one maps each letter to a suitable number such that each factor of the string can be identified by the unique sum of the numbers corresponding to its letters and hence abelian periods can be identified easily. The other one maps each letter to a prime number such that each factor of the string can be identified by the unique product of the numbers corresponding to its letters and so abelian periods can be identified easily. We also define weak abelian periods on strings and give an O(|y|log(|y|)) algorithm for their computation, together with some other algorithms for more basic problems.Comment: Accepted in the "International Journal of foundations of Computer Science

    Kitaev's quantum double model from a local quantum physics point of view

    Full text link
    A prominent example of a topologically ordered system is Kitaev's quantum double model D(G)\mathcal{D}(G) for finite groups GG (which in particular includes G=Z2G = \mathbb{Z}_2, the toric code). We will look at these models from the point of view of local quantum physics. In particular, we will review how in the abelian case, one can do a Doplicher-Haag-Roberts analysis to study the different superselection sectors of the model. In this way one finds that the charges are in one-to-one correspondence with the representations of D(G)\mathcal{D}(G), and that they are in fact anyons. Interchanging two of such anyons gives a non-trivial phase, not just a possible sign change. The case of non-abelian groups GG is more complicated. We outline how one could use amplimorphisms, that is, morphisms A→Mn(A)A \to M_n(A) to study the superselection structure in that case. Finally, we give a brief overview of applications of topologically ordered systems to the field of quantum computation.Comment: Chapter contributed to R. Brunetti, C. Dappiaggi, K. Fredenhagen, J. Yngvason (eds), Advances in Algebraic Quantum Field Theory (Springer 2015). Mainly revie

    Exact quantum Fourier transforms and discrete logarithm algorithms

    Get PDF
    We show how the quantum fast Fourier transform (QFFT) can be made exact for arbitrary orders (first for large primes). For most quantum algorithms only the quantum Fourier transform of order 2n2^n is needed, and this can be done exactly. Kitaev \cite{kitaev} showed how to approximate the Fourier transform for any order. Here we show how his construction can be made exact by using the technique known as ``amplitude amplification''. Although unlikely to be of any practical use, this construction e.g. allows to make Shor's discrete logarithm quantum algorithm exact. Thus we have the first example of an exact non black box fast quantum algorithm, thereby giving more evidence that ``quantum'' need not be probabilistic. We also show that in a certain sense the family of circuits for the exact QFFT is uniform. Namely the parameters of the gates can be calculated efficiently.Comment: 10 pages Late

    Fast simulation of large-scale growth models

    Full text link
    We give an algorithm that computes the final state of certain growth models without computing all intermediate states. Our technique is based on a "least action principle" which characterizes the odometer function of the growth process. Starting from an approximation for the odometer, we successively correct under- and overestimates and provably arrive at the correct final state. Internal diffusion-limited aggregation (IDLA) is one of the models amenable to our technique. The boundary fluctuations in IDLA were recently proved to be at most logarithmic in the size of the growth cluster, but the constant in front of the logarithm is still not known. As an application of our method, we calculate the size of fluctuations over two orders of magnitude beyond previous simulations, and use the results to estimate this constant.Comment: 27 pages, 9 figures. To appear in Random Structures & Algorithm
    • 

    corecore