15 research outputs found

    Sphere-tree construction using dynamic medial axis approximation

    Get PDF

    Surface collision detection for virtual prototyping

    Get PDF
    This paper presents an efficient collision detection algorithm designed to support assembly and maintenance simulation of complex assemblies. This approach exploits the surface knowledge, available from CAD models, to determine intersecting surfaces. It proposes a novel combination of Overlapping Axis-Aligned Bounding Box (OAABB) and R-tree structures to gain considerable performance improvements. This paper also shows an efficient traversal algorithm based on the R-tree structure of Axis-Aligned Bounding Boxes to determine intersecting objects and intersecting surfaces between three-dimensional components, for supporting the recognition of constraints in assembly and disassembly operations in virtual prototyping environments. The implementation of the proposed collision detection algorithm performs well against moderately complex industrial case studies. Current experimental results show that this implementation is effective in determining intersecting surfaces at interactive rates with moderately complex real case studies.info:eu-repo/semantics/publishedVersio

    MKtree: generation and simulations

    Get PDF
    The problem to represent very complex systems has been studied by several authors, obtaining solutions based on different data structures. In this paper, a K dimensional tree (Multirresolution Kdtree, MKtree) is introduced. The MKtree represents a hierarchical subdivision of the scene objects that guarantees a minimum space overlap between node regions. MKtrees are useful for collision detection and for time-critical rendering in very large environments requiring external memory storage. Examples in ship design applications are described.Postprint (published version

    Tighter bounding volumes for better occlusion culling performance

    Get PDF
    Bounding volumes are used in computer graphics to approximate the actual geometric shape of an object in a scene. The main intention is to reduce the costs associated with visibility or interference tests. The bounding volumes most commonly used have been axis-aligned bounding boxes and bounding spheres. In this paper, we propose the use of discrete orientation polytopes (\kdops) as bounding volumes for the specific use of visibility culling. Occlusion tests are computed more accurately using \kdops, but most importantly, they are also computed more efficiently. We illustrate this point through a series of experiments using a wide range of data models under varying viewing conditions. Although no bounding volume works the best in every situation, {\kdops} are often the best, and also work very well in those cases where they are not the best, therefore they provide good results without having to analyze applications and different bounding volumes

    Revisión de literatura de jerarquía volúmenes acotantes enfocados en detección de colisiones

    Get PDF
    (Eng) A bounding volume is a common method to simplify object representation by using the composition of geometrical shapes that enclose the object; it encapsulates complex objects by means of simple volumes and it is widely useful in collision detection applications and ray tracing for rendering algorithms. They are popular in computer graphics and computational geometry. Most popular bounding volumes are spheres, Oriented-Bounding Boxe s (OBB’ s), Axis-Align ed Bound ing Boxes (AABB’ s); moreover , the literature review includes ellipsoids, cylinders, sphere packing, sphere shells , k-DOP’ s, convex hulls, cloud of points, and minimal bounding boxe s, among others. A Bounding Volume Hierarchy is ussualy a tree in which the complete object is represented thigter fitting every level of the hierarchy. Additionally, each bounding volume has a cost associated to construction, update, and interference te ts. For instance, spheres are invariant to rotation and translations, then they do not require being updated ; their constructions and interference tests are more straightforward then OBB’ s; however, their tightness is lower than other bounding volumes. Finally , three comparisons between two polyhedra; seven different algorithms were used, of which five are public libraries for collision detection.(Spa) Un volumen acotante es un método común para simplificar la representación de los objetos por medio de composición de formas geométricas que encierran el objeto; estos encapsulan objetos complejos por medio de volúmenes simples y son ampliamente usados en aplicaciones de detección de colisiones y trazador de rayos para algoritmos de renderización. Los volúmenes acotantes son populares en computación gráfica y en geometría computacional; los más populares son las esferas, las cajas acotantes orientadas (OBB’s) y las cajas acotantes alineadas a los ejes (AABB’s); no obstante, la literatura incluye elipses, cilindros empaquetamiento de esferas, conchas de esferas, k-DOP’s, convex hulls, nubes de puntos y cajas acotantes mínimas, entre otras. Una jerarquía de volúmenes acotantes es usualmente un árbol, en el cual la representación de los objetos es más ajustada en cada uno de los niveles de la jerarquía. Adicionalmente, cada volumen acotante tiene asociado costos de construcción, actualización, pruebas de interferencia. Por ejemplo, las esferas so invariantes a rotación y translación, por lo tanto no requieren ser actualizadas en comparación con los AABB no son invariantes a la rotación. Por otro lado la construcción y las pruebas de solapamiento de las esferas son más simples que los OBB’s; sin embargo, el ajuste de las esferas es menor que otros volúmenes acotantes. Finalmente, se comparan dos poliedros con siete algoritmos diferentes de los cuales cinco son librerías públicas para detección de colisiones

    Efficient collision detection for spherical blend skinning

    Full text link

    A Benchmark and analysis of spatial data structures for physical simulations

    Get PDF
    Collision detection is an issue in physical simulations; without it simulations are inaccurate. Unfortunately, effective collision detection can require a significant amount of computational power. To reduce the number of computations and make the problem more tractable, computer scientists have used date structures to partition the system. This removes the need to have every single partical check for possible collisions with every other particle in the system; however, generic data structures typically do not work as well as specialized data structures, so this has led to the creation of multiple spatial data structures. Some spatial data structures and algorithms were customized and created to optimize memory usage while others have been made to increase speed. This project seeks to compare spatial data structures in systems with uniformly and non-uniformly distributed particles, while varying the number of particles and the filling factor. The results of this project should provide useful information to those doing general collisional simulations, such as physicists and engineers

    Scalable collision detection for distributed virtual environments

    Get PDF
    PhD ThesisDistributed Virtual Environments (DVEs) provide a mechanism whereby dispersed users can interact with one-another within a shared \'irtual world. DVEs commonly allow users to interact with one-another in ways analogous to the real-world, e.g. mimicking Newtonian physics. A scalable DVE should enable large numbers of users to participate simultaneously, regardless of the In geographical location and hardware configurations of individual users. addition, these users should perceive a mutually-consistent virtual world in which each user perceives a consistent series of events in real-time. Collision detection and response is a fundamental requirement of most virtual environments and simulations. It is a computationally-expensive operation which must be perfonned at frequent intervals in all virtual environments which simulate the motion of solid objects. Collision detection has received large amounts of research interest and as a result a number of efficient collision detection algorithms have been proposed. However, these collision detection approaches are designed to detect collisions efficiently in simulations run on a single machine and are not capable of overcoming problems associated with scalability and consistency, which are of paramount importance in DVEs. This thesis presents a new collision detection approach, tenned distributed collision detection, which provides high-levels of scalability, consistency and responsiveness. This thesis presents the algorithms and theory which underpin the distributed collision detection approach and provides experimental results demonstrating its scalability and responsiveness

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion
    corecore