689 research outputs found

    User's Guide to the SoDa and SOLEMI Services

    No full text
    The European Earth observation programme GMES (Global Monitoring for Environment and Security) aims at providing environmental information to support policymakers, public authorities and both public and commercial users. A systematic monitoring and forecasting of the state of the Earth's subsystems is currently under development. Six thematic areas are developed: marine, land, atmosphere, emergency, security and climate change. A land monitoring service, a marine monitoring service and an atmosphere monitoring service will contribute directly to the monitoring of climate change and to the assessment of mitigation and adaptation policies. Additional GMES services will address respectively emergency response and security-related aspects. The pre-operational atmosphere service of GMES is currently provided through the FP7 project MACC (Monitoring Atmospheric Composition and Climate). MACC combines state-of-the-art atmospheric modelling with Earth observation data to provide information services covering European Air Quality, Global Atmospheric Composition, Climate, and UV and Solar Energy. Within the radiation subproject (MACC-RAD) existing historical and daily updated databases for monitoring incoming surface solar irradiance are further developed. The service will meet the needs of European and national policy development and the requirements of (commercial) downstream services (e.g. planning, monitoring, efficiency improvements, integration into energy supply grids). The SOLEMI service (operated by MACC partner DLR) and the SoDa service (operated by MACC partner ARMINES and its subsidiary Transvalor) have been specifically developed in several national, European and ESA projects to fulfil the requirements for long-term databases and NRT services. On its transition process from the precursor services SoDa and SOLEMI the following User's Guide intends to summarize existing knowledge, which has been published only in a scattered manner. Part A 'Users' Expectations' describes the communities of users, their expectations and gives an overview of the compliance of the MACC RAD service with those. In Part B 'Creating Databases', the current databases HelioClim and SOLEMI as well as the methods used to convert satellite images into solar surface irradiance are presented. The quality of the retrieved irradiances is discussed. An overview of the operations and workflow is presented for the creation, updating and monitoring of these databases. Part C 'Delivering products' is devoted to the supply of products. The core products are defined. The future MACC-RAD Service is described and a prototype is presented. It is intended to update this User's Guide regularly following the realisation of the MACC RAD service line

    Solar Power System Modeling and Performance Analysis

    Get PDF
    At present the main source of our power and energy needs are from fossil fuel; almost all transportation tools and nearly 70% of electrical power are produced by fossil fuel. But unfortunately these materials are limited in our planet, with obvious drawback such as pollution. So looking for new kinds of energy supply is an urgent matter. Solar-powered photovoltaic system provides a clean energy solution to this problem. It is developing fast all over the world in terms of both research work and actual applications. It is estimated that the power supplied by solar energy can provide 10 percent of United States power needs. This thesis mainly discusses photovoltaic system modeling from the beginning of site selection to system sizing. Some tools are used during the project. A GIS application is used to help developers in the preliminary studies. Photovoltaic system simulation software PVsyst involves the system components setting and sizing process. Two types of systems are built in this study: stand-alone system and grid connected system; the location is set at Denver, Colorado. For each system the array mounting, analysis of loads and modules selection are studied. The simulation is performed after the system model is completed, the results includes loss diagrams, system energy yields and system efficiencies. At last the economic analysis and comparison between the two types of PV systems is analyzed

    Optimization of daytime fuel consumption for a hybrid diesel and photovoltaic industrial micro-grid

    Get PDF
    2017 Spring.Includes bibliographical references.The work to be presented will examine the optimization of daytime diesel fuel consumption for a hybrid diesel and photovoltaic (PV) industrial micro-grid with no energy storage. The micro-grid utilizes a control system developed to forecast PV transients and manage the diesel generators providing electrical supply to the micro-grid. The work focuses on optimization of daytime fuel consumption when PV generation is available. Simulations were utilized to minimize diesel consumption while maintaining secure operations by controlling both PV curtailment and diesel generation. The control system utilizes a cloud forecast system based upon sky imaging, developed by CSIRO (Australia), to predict the presence of cloud cover in concentric "rings" around the sun's position in the sky. The control system utilizes these cloud detections to establish supervisory settings for PV and diesel generation. Work included methods to optimize control response for the number of rings around the sun, studied the use of two different sizes of generators to allow for increased PV utilization, and modification of generator controller settings to reduce fault occurrence. The work indicates that increasing the number of rings used to create the PV forecast has the greatest impact on reducing the number of faults, while having a minimal impact on the total diesel consumption. Additionally, increasing the total number of generators in the system increases PV utilization and decreases fuel consumption

    Estimating Solar Energy Production in Urban Areas for Electric Vehicles

    Get PDF
    Cities have a high potential for solar energy from PVs installed on buildings\u27 rooftops. There is an increased demand for solar energy in cities to reduce the negative effect of climate change. The thesis investigates solar energy potential in urban areas. It tries to determine how to detect and identify available rooftop areas, how to calculate suitable ones after excluding the effects of the shade, and the estimated energy generated from PVs. Geographic Information Sciences (GIS) and Remote Sensing (RS) are used in solar city planning. The goal of this research is to assess available and suitable rooftops areas using different GIS and RS techniques for installing PVs and estimating solar energy production for a sample of six compounds in New Cairo, and explore how to map urban areas on the city scale. In this research, the study area is the new Cairo city which has a high potential for harvesting solar energy, buildings in each compound have the same height, which does not cast shade on other buildings affecting PV efficiency. When applying GIS and RS techniques in New Cairo city, it is found that environmental factors - such as bare soil - affect the accuracy of the result, which reached 67% on the city scale. Researching more minor scales, such as compounds, required Very High Resolution (VHR) satellite images with a spatial resolution of up to 0.5 meter. The RS techniques applied in this research included supervised classification, and feature extraction, on Pleiades-1b VHR. On the compound scale, the accuracy assessment for the samples ranged between 74.6% and 96.875%. Estimating the PV energy production requires solar data; which was collected using a weather station and a pyrometer at the American University in Cairo, which is typical of the neighboring compounds in the new Cairo region. It took three years to collect the solar incidence data. The Hay- Devis, Klucher, and Reindl (HDKR) model is then employed to extrapolate the solar radiation measured on horizontal surfaces β =0°, to that on tilted surfaces with inclination angles β =10°, 20°, 30° and 45°. The calculated (with help of GIS and Solar radiation models) net rooftop area available for capturing solar radiation was determined for sample New Cairo compounds . The available rooftop areas were subject to the restriction that all the PVs would be coplanar, none of the PVs would protrude outside the rooftop boundaries, and no shading of PVs would occur at any time of the year; moreover typical other rooftop occupied areas, and actual dimensions of typical roof top PVs were taken into consideration. From those calculations, both the realistic total annual Electrical energy produced by the PVs and their daily monthly energy produced are deduced. The former is relevant if the PVs are tied to a grid, whereas the other is more relevant if it is not; optimization is different for both. Results were extended to estimate the total number of cars that may be driven off PV converted solar radiation per home, for different scenarios

    Solar access in the compact city: a study case in Barcelona

    Get PDF
    Postprint (published version
    corecore