119 research outputs found

    Benchmarking Multivariate Time Series Classification Algorithms

    Full text link
    Time Series Classification (TSC) involved building predictive models for a discrete target variable from ordered, real valued, attributes. Over recent years, a new set of TSC algorithms have been developed which have made significant improvement over the previous state of the art. The main focus has been on univariate TSC, i.e. the problem where each case has a single series and a class label. In reality, it is more common to encounter multivariate TSC (MTSC) problems where multiple series are associated with a single label. Despite this, much less consideration has been given to MTSC than the univariate case. The UEA archive of 30 MTSC problems released in 2018 has made comparison of algorithms easier. We review recently proposed bespoke MTSC algorithms based on deep learning, shapelets and bag of words approaches. The simplest approach to MTSC is to ensemble univariate classifiers over the multivariate dimensions. We compare the bespoke algorithms to these dimension independent approaches on the 26 of the 30 MTSC archive problems where the data are all of equal length. We demonstrate that the independent ensemble of HIVE-COTE classifiers is the most accurate, but that, unlike with univariate classification, dynamic time warping is still competitive at MTSC.Comment: Data Min Knowl Disc (2020

    Feature-based time-series analysis

    Full text link
    This work presents an introduction to feature-based time-series analysis. The time series as a data type is first described, along with an overview of the interdisciplinary time-series analysis literature. I then summarize the range of feature-based representations for time series that have been developed to aid interpretable insights into time-series structure. Particular emphasis is given to emerging research that facilitates wide comparison of feature-based representations that allow us to understand the properties of a time-series dataset that make it suited to a particular feature-based representation or analysis algorithm. The future of time-series analysis is likely to embrace approaches that exploit machine learning methods to partially automate human learning to aid understanding of the complex dynamical patterns in the time series we measure from the world.Comment: 28 pages, 9 figure

    Deep learning for time series classification: a review

    Get PDF
    Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.Comment: Accepted at Data Mining and Knowledge Discover

    MTS2Graph: Interpretable Multivariate Time Series Classification with Temporal Evolving Graphs

    Full text link
    Conventional time series classification approaches based on bags of patterns or shapelets face significant challenges in dealing with a vast amount of feature candidates from high-dimensional multivariate data. In contrast, deep neural networks can learn low-dimensional features efficiently, and in particular, Convolutional Neural Networks (CNN) have shown promising results in classifying Multivariate Time Series (MTS) data. A key factor in the success of deep neural networks is this astonishing expressive power. However, this power comes at the cost of complex, black-boxed models, conflicting with the goals of building reliable and human-understandable models. An essential criterion in understanding such predictive deep models involves quantifying the contribution of time-varying input variables to the classification. Hence, in this work, we introduce a new framework for interpreting multivariate time series data by extracting and clustering the input representative patterns that highly activate CNN neurons. This way, we identify each signal's role and dependencies, considering all possible combinations of signals in the MTS input. Then, we construct a graph that captures the temporal relationship between the extracted patterns for each layer. An effective graph merging strategy finds the connection of each node to the previous layer's nodes. Finally, a graph embedding algorithm generates new representations of the created interpretable time-series features. To evaluate the performance of our proposed framework, we run extensive experiments on eight datasets of the UCR/UEA archive, along with HAR and PAM datasets. The experiments indicate the benefit of our time-aware graph-based representation in MTS classification while enriching them with more interpretability
    • …
    corecore