703 research outputs found

    Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks

    Full text link
    X-ray diffraction (XRD) data acquisition and analysis is among the most time-consuming steps in the development cycle of novel thin-film materials. We propose a machine-learning-enabled approach to predict crystallographic dimensionality and space group from a limited number of thin-film XRD patterns. We overcome the scarce-data problem intrinsic to novel materials development by coupling a supervised machine learning approach with a model agnostic, physics-informed data augmentation strategy using simulated data from the Inorganic Crystal Structure Database (ICSD) and experimental data. As a test case, 115 thin-film metal halides spanning 3 dimensionalities and 7 space-groups are synthesized and classified. After testing various algorithms, we develop and implement an all convolutional neural network, with cross validated accuracies for dimensionality and space-group classification of 93% and 89%, respectively. We propose average class activation maps, computed from a global average pooling layer, to allow high model interpretability by human experimentalists, elucidating the root causes of misclassification. Finally, we systematically evaluate the maximum XRD pattern step size (data acquisition rate) before loss of predictive accuracy occurs, and determine it to be 0.16{\deg}, which enables an XRD pattern to be obtained and classified in 5.5 minutes or less.Comment: Accepted with minor revisions in npj Computational Materials, Presented in NIPS 2018 Workshop: Machine Learning for Molecules and Material

    Quality assessment of docked protein interfaces using 3D convolution

    Get PDF
    2021 Spring.Includes bibliographical references.Proteins play a vital role in most biological processes, most of which occur through interactions between proteins. When proteins interact they form a complex, whose functionality is different from the individual proteins in the complex. Therefore understanding protein interactions and their interfaces is an important problem. Experimental methods for this task are expensive and time consuming, which has led to the development of docking methods for predicting the structures of protein complexes. These methods produce a large number of potential solutions, and the energy functions used in these methods are not good enough to find solutions that are close to the native state of the complex. Deep learning and its ability to model complex problems has opened up the opportunity to model protein complexes and learn from scratch how to rank docking solutions. As a part of this work, we have developed a 3D convolutional network approach that uses raw atomic densities to address this problem. Our method achieves performance which is on par with state-of-art methods. We have evaluated our model on docked protein structures simulated from four docking tools namely ZDOCK, HADDOCK, FRODOCK and ClusPro on targets from Docking Benchmark Data version 5 (DBD5)

    Convolutional neuronal networks combined with X-ray phase-contrast imaging for a fast and observer-independent discrimination of cartilage and liver diseases stages

    Get PDF
    We applied transfer learning using Convolutional Neuronal Networks to high resolution X-ray phase contrast computed tomography datasets and tested the potential of the systems to accurately classify Computed Tomography images of different stages of two diseases, i.e. osteoarthritis and liver fibrosis. The purpose is to identify a time-effective and observer-independent methodology to identify pathological conditions. Propagation-based X-ray phase contrast imaging WAS used with polychromatic X-rays to obtain a 3D visualization of 4 human cartilage plugs and 6 rat liver samples with a voxel size of 0.7x0.7x0.7 mu m(3) and 2.2x2.2x2.2 mu m(3), respectively. Images with a size of 224x224 pixels are used to train three pre-trained convolutional neuronal networks for data classification, which are the VGG16, the Inception V3, and the Xception networks. We evaluated the performance of the three systems in terms of classification accuracy and studied the effect of the variation of the number of inputs, training images and of iterations. The VGG16 network provides the highest classification accuracy when the training and the validation-test of the network are performed using data from the same samples for both the cartilage (99.8%) and the liver (95.5%) datasets. The Inception V3 and Xception networks achieve an accuracy of 84.7% (43.1%) and of 72.6% (53.7%), respectively, for the cartilage (liver) images. By using data from different samples for the training and validation-test processes, the Xception network provided the highest test accuracy for the cartilage dataset (75.7%), while for the liver dataset the VGG16 network gave the best results (75.4%). By using convolutional neuronal networks we show that it is possible to classify large datasets of biomedical images in less than 25 min on a 8 CPU processor machine providing a precise, robust, fast and observer-independent method for the discrimination/classification of different stages of osteoarthritis and liver diseases

    Siamese Networks for 1D Signal Identification

    Get PDF
    corecore