2,092 research outputs found

    An artifacts removal post-processing for epiphyseal region-of-interest (EROI) localization in automated bone age assessment (BAA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Segmentation is the most crucial part in the computer-aided bone age assessment. A well-known type of segmentation performed in the system is adaptive segmentation. While providing better result than global thresholding method, the adaptive segmentation produces a lot of unwanted noise that could affect the latter process of epiphysis extraction.</p> <p>Methods</p> <p>A proposed method with anisotropic diffusion as pre-processing and a novel Bounded Area Elimination (BAE) post-processing algorithm to improve the algorithm of ossification site localization technique are designed with the intent of improving the adaptive segmentation result and the region-of interest (ROI) localization accuracy.</p> <p>Results</p> <p>The results are then evaluated by quantitative analysis and qualitative analysis using texture feature evaluation. The result indicates that the image homogeneity after anisotropic diffusion has improved averagely on each age group for 17.59%. Results of experiments showed that the smoothness has been improved averagely 35% after BAE algorithm and the improvement of ROI localization has improved for averagely 8.19%. The MSSIM has improved averagely 10.49% after performing the BAE algorithm on the adaptive segmented hand radiograph.</p> <p>Conclusions</p> <p>The result indicated that hand radiographs which have undergone anisotropic diffusion have greatly reduced the noise in the segmented image and the result as well indicated that the BAE algorithm proposed is capable of removing the artifacts generated in adaptive segmentation.</p

    Test-retest reliability of structural brain networks from diffusion MRI

    Get PDF
    Structural brain networks constructed from diffusion MRI (dMRI) and tractography have been demonstrated in healthy volunteers and more recently in various disorders affecting brain connectivity. However, few studies have addressed the reproducibility of the resulting networks. We measured the test–retest properties of such networks by varying several factors affecting network construction using ten healthy volunteers who underwent a dMRI protocol at 1.5 T on two separate occasions. Each T1-weighted brain was parcellated into 84 regions-of-interest and network connections were identified using dMRI and two alternative tractography algorithms, two alternative seeding strategies, a white matter waypoint constraint and three alternative network weightings. In each case, four common graph-theoretic measures were obtained. Network properties were assessed both node-wise and per network in terms of the intraclass correlation coefficient (ICC) and by comparing within- and between-subject differences. Our findings suggest that test–retest performance was improved when: 1) seeding from white matter, rather than grey; and 2) using probabilistic tractography with a two-fibre model and sufficient streamlines, rather than deterministic tensor tractography. In terms of network weighting, a measure of streamline density produced better test–retest performance than tract-averaged diffusion anisotropy, although it remains unclear which is a more accurate representation of the underlying connectivity. For the best performing configuration, the global within-subject differences were between 3.2% and 11.9% with ICCs between 0.62 and 0.76. The mean nodal within-subject differences were between 5.2% and 24.2% with mean ICCs between 0.46 and 0.62. For 83.3% (70/84) of nodes, the within-subject differences were smaller than between-subject differences. Overall, these findings suggest that whilst current techniques produce networks capable of characterising the genuine between-subject differences in connectivity, future work must be undertaken to improve network reliability

    Combining global and local information for the segmentation of MR images of the brain

    Get PDF
    Magnetic resonance imaging can provide high resolution volumetric images of the brain with exceptional soft tissue contrast. These factors allow the complex structure of the brain to be clearly visualised. This has lead to the development of quantitative methods to analyse neuroanatomical structures. In turn, this has promoted the use of computational methods to automate and improve these techniques. This thesis investigates methods to accurately segment MRI images of the brain. The use of global and local image information is considered, where global information includes image intensity distributions, means and variances and local information is based on the relationship between spatially neighbouring voxels. Methods are explored that aim to improve the classification and segmentation of MR images of the brain by combining these elements. Some common artefacts exist in MR brain images that can be seriously detrimental to image analysis methods. Methods to correct for these artifacts are assessed by exploring their effect, first with some well established classification methods and then with methods that combine global information with local information in the form of a Markov random field model. Another characteristic of MR images is the partial volume effect that occurs where signals from different tissues become mixed over the finite volume of a voxel. This effect is demonstrated and quantified using a simulation. Analysis methods that address these issues are tested on simulated and real MR images. They are also applied to study the structure of the temporal lobes in a group of patients with temporal lobe epilepsy. The results emphasise the benefits and limitations of applying these methods to a problem of this nature. The work in this thesis demonstrates the advantages of using global and local information together in the segmentation of MR brain images and proposes a generalised framework that allows this information to be combined in a flexible way

    Using the Sharp Operator for edge detection and nonlinear diffusion

    Get PDF
    In this paper we investigate the use of the sharp function known from functional analysis in image processing. The sharp function gives a measure of the variations of a function and can be used as an edge detector. We extend the classical notion of the sharp function for measuring anisotropic behaviour and give a fast anisotropic edge detection variant inspired by the sharp function. We show that these edge detection results are useful to steer isotropic and anisotropic nonlinear diffusion filters for image enhancement

    Multidimensional image analysis of cardiac function in MRI

    Get PDF
    Cardiac morphology is a key indicator of cardiac health. Important metrics that are currently in clinical use are left-ventricle cardiac ejection fraction, cardiac muscle (myocardium) mass, myocardium thickness and myocardium thickening over the cardiac cycle. Advances in imaging technologies have led to an increase in temporal and spatial resolution. Such an increase in data presents a laborious task for medical practitioners to analyse. In this thesis, measurement of the cardiac left-ventricle function is achieved by developing novel methods for the automatic segmentation of the left-ventricle blood-pool and the left ventricle myocardium boundaries. A preliminary challenge faced in this task is the removal of noise from Magnetic Resonance Imaging (MRI) data, which is addressed by using advanced data filtering procedures. Two mechanisms for left-ventricle segmentation are employed. Firstly segmentation of the left ventricle blood-pool for the measurement of ejection fraction is undertaken in the signal intensity domain. Utilising the high discrimination between blood and tissue, a novel methodology based on a statistical partitioning method offers success in localising and segmenting the blood pool of the left ventricle. From this initialisation, the estimation of the outer wall (epi-cardium) of the left ventricle can be achieved using gradient information and prior knowledge. Secondly, a more involved method for extracting the myocardium of the leftventricle is developed, that can better perform segmentation in higher dimensions. Spatial information is incorporated in the segmentation by employing a gradient-based boundary evolution. A level-set scheme is implemented and a novel formulation for the extraction of the cardiac muscle is introduced. Two surfaces, representing the inner and the outer boundaries of the left-ventricle, are simultaneously evolved using a coupling function and supervised with a probabilistic model of expertly assisted manual segmentations

    Upper airways segmentation using principal curvatures

    Get PDF
    Esta tesis propone una nueva técnica para segmentar las vías aéreas superiores. Esta propuesta permite la extracción de estructuras curvilíneas usando curvaturas principales. La propuesta permite la extracción de éstas estructuras en imágenes 2D y 3D. Entre las principales novedades se encuentra la propuesta de un nuevo criterio de parada en la propagación del algoritmo de realce de contraste (operador multi-escala de tipo sombrero alto). De la misma forma, el criterio de parada propuesto es usado para detener los algoritmos de difusión anisotrópica. Además, un nuevo criterio es propuesto para seleccionar las curvaturas principales que conforman las estructuras curvilíneas, que se basa en los criterios propuestos por Steger, Deng et. al. y Armande et. al. Además, se propone un nuevo algoritmo para realizar la supresión de nomáximos que permite reducir la presencia de discontinuidades en el borde de las estructuras curvilíneas. Para extraer los bordes de las estructuras curvilíneas, se utiliza un algoritmo de enlace que incluye un nuevo criterio de distancia para reducir la aparición de agujeros en la estructura final. Finalmente, con base en los resultados obtenidos, se utiliza un algoritmo morfológico para cerrar los agujeros y se aplica un algoritmo de crecimiento de regiones para obtener la segmentación final de las vías respiratorias superiores.This dissertation proposes a new approach to segment the upper airways. This proposal allows the extraction of curvilinear structures based on the principal curvatures. The proposal allows extracting these structures from 2D and 3D images. Among the main novelties is the proposal of a new stopping criterion to stop the propagation of the contrast enhancement algorithm (multiscale top-hat morphological operator). In the same way, the proposed stopping criterion is used to stop the anisotropic diffusion algorithms. In addition, a new criterion is proposed to select the principal curvatures that make up the curvilinear structures, which is based on the criteria proposed by Steger, Deng et. al. and Armande et. al. Furthermore, a new algorithm to perform the non-maximum suppression that allows reducing the presence of discontinuities in the border of curvilinear structures is proposed. To extract the edges of the curvilinear structures, a linking algorithm is used that includes a new distance criterion to reduce the appearance of gaps in the final structure. Finally, based on the obtained results, a morphological algorithm is used to close the gaps and a region growing algorithm to obtain the final upper airways segmentation is applied.Doctor en IngenieríaDoctorad

    Nonlinear tube-fitting for the analysis of anatomical and functional structures

    Full text link
    We are concerned with the estimation of the exterior surface and interior summaries of tube-shaped anatomical structures. This interest is motivated by two distinct scientific goals, one dealing with the distribution of HIV microbicide in the colon and the other with measuring degradation in white-matter tracts in the brain. Our problem is posed as the estimation of the support of a distribution in three dimensions from a sample from that distribution, possibly measured with error. We propose a novel tube-fitting algorithm to construct such estimators. Further, we conduct a simulation study to aid in the choice of a key parameter of the algorithm, and we test our algorithm with validation study tailored to the motivating data sets. Finally, we apply the tube-fitting algorithm to a colon image produced by single photon emission computed tomography (SPECT) and to a white-matter tract image produced using diffusion tensor imaging (DTI).Comment: Published in at http://dx.doi.org/10.1214/10-AOAS384 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore