333 research outputs found

    Fish tracking technology development. Phase 1 project definition desk study

    Get PDF
    The document reports on Phase 1 of a definition study to appraise the options to develop fish tracking equipment, in particular tags and data logging systems in order to improve the efficiency of the Environment Agency's tracking studies and to obtain a greater understanding of fish biology. Covered in this report are radio telemetry, audio telemetry, High Resolution Position Fixing, data storage and archival tags and other fish tracking systems such as biosonics

    Developments in Power Generation and Transmission Infrastructures in China

    Get PDF

    Operation and restoration of bulk power systems using distributed energy resources and multi-microgrids

    Get PDF
    The fast-paced and meaningful penetration of distributed energy resources (DERs), such as variable renewable energy sources (RESs), concurrently with the widespread occurrence of natural disasters and man-made threats, has raised several challenges for the modern bulk power systems (BPSs) status quo. Although the DERs are demanding new solutions to ensure adequate stability and security levels, these resources enable significant opportunities to improve multiple BPS perspectives. In this view, seeking to capitalize on these novel features, while aware of the significant changes to BPS outlook, this thesis is focused on developing new methods able to capitalize on modern monitoring infrastructures, DERs and control areas opportunities toward the improvement of BPS operation and stability. Specifically, the thesis focuses on: 1) First, a novel method for the improvement of the static security region (SSR) is proposed based on a new network partitioning algorithm. The proposed algorithm focuses on modern BPS with high penetration of variable RES generation. It divides the BPS into coherence areas according to its criticality mapping, and consequently, areas are adaptively associated with SSRs generators groups. To this end, each bus is assigned a criticality index from the potential energy function, whereas this calculation is based on the data of the wide-area measurement system (WAMS) using phasor measurement unit (PMU); 2) Second, a novel area-based sensitivity index for voltage stability support is proposed, exploring both the network-wide sensitivity and the local characteristics of voltage collapse. The developed index focuses on the determination of the most effective buses for voltage support and their respective capability of increasing the system’s load margin. For this, a novel area-based outlook is developed taking advantage of the new possibilities enabled by BPS distributed controllable resources, such as flexible resources (FRs)

    Electromechanical Dynamics of High Photovoltaic Power Grids

    Get PDF
    This dissertation study focuses on the impact of high PV penetration on power grid electromechanical dynamics. Several major aspects of power grid electromechanical dynamics are studied under high PV penetration, including frequency response and control, inter-area oscillations, transient rotor angle stability and electromechanical wave propagation.To obtain dynamic models that can reasonably represent future power systems, Chapter One studies the co-optimization of generation and transmission with large-scale wind and solar. The stochastic nature of renewables is considered in the formulation of mixed-integer programming model. Chapter Two presents the development procedures of high PV model and investigates the impact of high PV penetration on frequency responses. Chapter Three studies the impact of PV penetration on inter-area oscillations of the U.S. Eastern Interconnection system. Chapter Four presents the impacts of high PV on other electromechanical dynamic issues, including transient rotor angle stability and electromechanical wave propagation. Chapter Five investigates the frequency response enhancement by conventional resources. Chapter Six explores system frequency response improvement through real power control of wind and PV. For improving situation awareness and frequency control, Chapter Seven studies disturbance location determination based on electromechanical wave propagation. In addition, a new method is developed to generate the electromechanical wave propagation speed map, which is useful to detect system inertia distribution change. Chapter Eight provides a review on power grid data architectures for monitoring and controlling power grids. Challenges and essential elements of data architecture are analyzed to identify various requirements for operating high-renewable power grids and a conceptual data architecture is proposed. Conclusions of this dissertation study are given in Chapter Nine

    Security Analysis of Phasor Measurement Units in Smart Grid Communication Infrastructures

    Get PDF
    Phasor Measurement Units (PMUs), or synchrophasors, are rapidly being deployed in the smart grid with the goal of measuring phasor quantities concurrently from wide area distribution substations. By utilizing GPS receivers, PMUs can take a wide area snapshot of power systems. Thus, the possibility of blackouts in the smart grid, the next generation power grid, will be reduced. As the main enabler of Wide Area Measurement Systems (WAMS), PMUs transmit measured values to Phasor Data Concentrators (PDCs) by the synchrophasor standard IEEE C37.118. IEC 61850 and IEC 62351 are the communication protocols for the substation automation system and the security standard for the communication protocol of IEC 61850, respectively. According to the aforementioned communication and security protocols, as well as the implementation constraints of different platforms, HMAC-SHA1 was suggested by the TC 57 WG group in October 2009. The hash-based Message Authentication Code (MAC) is an algorithm for verifying both message integrity and authentication by using an iterative hash function and a supplied secret key. There are a variety of security attacks on the PMU communications infrastructure. Timing Side Channel Attack (SCA) is one of these possible attacks. In this thesis, timing side channel vulnerability against execution time of the HMAC-SHA1 authentication algorithm is studied. Both linear and negative binomial regression are used to model some security features of the stored key, e.g., its length and Hamming weight. The goal is to reveal secret-related information based on leakage models. The results would mitigate the cryptanalysis process of an attacker. Adviser: Yi Qia
    corecore