2,462 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Air Quality Research Using Remote Sensing

    Get PDF
    Air pollution is a worldwide environmental hazard that poses serious consequences not only for human health and the climate but also for agriculture, ecosystems, and cultural heritage, among other factors. According to the WHO, there are 8 million premature deaths every year as a result of exposure to ambient air pollution. In addition, more than 90% of the world’s population live in areas where the air quality is poor, exceeding the recommended limits. On the other hand, air pollution and the climate co-influence one another through complex physicochemical interactions in the atmosphere that alter the Earth’s energy balance and have implications for climate change and the air quality. It is important to measure specific atmospheric parameters and pollutant compound concentrations, monitor their variations, and analyze different scenarios with the aim of assessing the air pollution levels and developing early warning and forecast systems as a means of improving the air quality and safeguarding public health. Such measures can also form part of efforts to achieve a reduction in the number of air pollution casualties and mitigate climate change phenomena. This book contains contributions focusing on remote sensing techniques for evaluating air quality, including the use of in situ data, modeling approaches, and the synthesis of different instrumentations and techniques. The papers published in this book highlight the importance and relevance of air quality studies and the potential of remote sensing, particularly that conducted from Earth observation platforms, to shed light on this topic

    On the path integration system of insects: there and back again

    Get PDF
    Navigation is an essential capability of animate organisms and robots. Among animate organisms of particular interest are insects because they are capable of a variety of navigation competencies solving challenging problems with limited resources, thereby providing inspiration for robot navigation. Ants, bees and other insects are able to return to their nest using a navigation strategy known as path integration. During path integration, the animal maintains a running estimate of the distance and direction to its nest as it travels. This estimate, known as the `home vector', enables the animal to return to its nest. Path integration was the technique used by sea navigators to cross the open seas in the past. To perform path integration, both sailors and insects need access to two pieces of information, their direction and their speed of motion over time. Neurons encoding the heading and speed have been found to converge on a highly conserved region of the insect brain, the central complex. It is, therefore, believed that the central complex is key to the computations pertaining to path integration. However, several questions remain about the exact structure of the neuronal circuit that tracks the animal's heading, how it differs between insect species, and how the speed and direction are integrated into a home vector and maintained in memory. In this thesis, I have combined behavioural, anatomical, and physiological data with computational modelling and agent simulations to tackle these questions. Analysis of the internal compass circuit of two insect species with highly divergent ecologies, the fruit fly Drosophila melanogaster and the desert locust Schistocerca gregaria, revealed that despite 400 million years of evolutionary divergence, both species share a fundamentally common internal compass circuit that keeps track of the animal's heading. However, subtle differences in the neuronal morphologies result in distinct circuit dynamics adapted to the ecology of each species, thereby providing insights into how neural circuits evolved to accommodate species-specific behaviours. The fast-moving insects need to update their home vector memory continuously as they move, yet they can remember it for several hours. This conjunction of fast updating and long persistence of the home vector does not directly map to current short, mid, and long-term memory accounts. An extensive literature review revealed a lack of available memory models that could support the home vector memory requirements. A comparison of existing behavioural data with the homing behaviour of simulated robot agents illustrated that the prevalent hypothesis, which posits that the neural substrate of the path integration memory is a bump attractor network, is contradicted by behavioural evidence. An investigation of the type of memory utilised during path integration revealed that cold-induced anaesthesia disrupts the ability of ants to return to their nest, but it does not eliminate their ability to move in the correct homing direction. Using computational modelling and simulated agents, I argue that the best explanation for this phenomenon is not two separate memories differently affected by temperature but a shared memory that encodes both the direction and distance. The results presented in this thesis shed some more light on the labyrinth that researchers of animal navigation have been exploring in their attempts to unravel a few more rounds of Ariadne's thread back to its origin. The findings provide valuable insights into the path integration system of insects and inspiration for future memory research, advancing path integration techniques in robotics, and developing novel neuromorphic solutions to computational problems

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Probabilistic Inference for Model Based Control

    Get PDF
    Robotic systems are essential for enhancing productivity, automation, and performing hazardous tasks. Addressing the unpredictability of physical systems, this thesis advances robotic planning and control under uncertainty, introducing learning-based methods for managing uncertain parameters and adapting to changing environments in real-time. Our first contribution is a framework using Bayesian statistics for likelihood-free inference of model parameters. This allows employing complex simulators for designing efficient, robust controllers. The method, integrating the unscented transform with a variant of information theoretical model predictive control, shows better performance in trajectory evaluation compared to Monte Carlo sampling, easing the computational load in various control and robotics tasks. Next, we reframe robotic planning and control as a Bayesian inference problem, focusing on the posterior distribution of actions and model parameters. An implicit variational inference algorithm, performing Stein Variational Gradient Descent, estimates distributions over model parameters and control inputs in real-time. This Bayesian approach effectively handles complex multi-modal posterior distributions, vital for dynamic and realistic robot navigation. Finally, we tackle diversity in high-dimensional spaces. Our approach mitigates underestimation of uncertainty in posterior distributions, which leads to locally optimal solutions. Using the theory of rough paths, we develop an algorithm for parallel trajectory optimisation, enhancing solution diversity and avoiding mode collapse. This method extends our variational inference approach for trajectory estimation, employing diversity-enhancing kernels and leveraging path signature representation of trajectories. Empirical tests, ranging from 2-D navigation to robotic manipulators in cluttered environments, affirm our method's efficiency, outperforming existing alternatives

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Soundscape in Urban Forests

    Get PDF
    This Special Issue of Forests explores the role of soundscapes in urban forested areas. It is comprised of 11 papers involving soundscape studies conducted in urban forests from Asia and Africa. This collection contains six research fields: (1) the ecological patterns and processes of forest soundscapes; (2) the boundary effects and perceptual topology; (3) natural soundscapes and human health; (4) the experience of multi-sensory interactions; (5) environmental behavior and cognitive disposition; and (6) soundscape resource management in forests
    • …
    corecore