2,764 research outputs found

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    Robust and efficient Fourier-Mellin transform approximations for invariant grey-level image description and reconstruction

    No full text
    International audienceThis paper addresses the gray-level image representation ability of the Fourier-Mellin Transform (FMT) for pattern recognition, reconstruction and image database retrieval. The main practical di±culty of the FMT lies in the accuracy and e±ciency of its numerical approximation and we propose three estimations of its analytical extension. Comparison of these approximations is performed from discrete and ¯nite-extent sets of Fourier- Mellin harmonics by means of experiments in: (i) image reconstruction via both visual inspection and the computation of a reconstruction error; and (ii) pattern recognition and discrimination by using a complete and convergent set of features invariant under planar similarities. Experimental results on real gray-level images show that it is possible to recover an image to within a speci¯ed degree of accuracy and to classify objects reliably even when a large set of descriptors is used. Finally, an example will be given, illustrating both theoretical and numerical results in the context of content-based image retrieval

    Algorithmic issues in visual object recognition

    Get PDF
    This thesis is divided into two parts covering two aspects of research in the area of visual object recognition. Part I is about human detection in still images. Human detection is a challenging computer vision task due to the wide variability in human visual appearances and body poses. In this part, we present several enhancements to human detection algorithms. First, we present an extension to the integral images framework to allow for constant time computation of non-uniformly weighted summations over rectangular regions using a bundle of integral images. Such computational element is commonly used in constructing gradient-based feature descriptors, which are the most successful in shape-based human detection. Second, we introduce deformable features as an alternative to the conventional static features used in classifiers based on boosted ensembles. Deformable features can enhance the accuracy of human detection by adapting to pose changes that can be described as translations of body features. Third, we present a comprehensive evaluation framework for cascade-based human detectors. The presented framework facilitates comparison between cascade-based detection algorithms, provides a confidence measure for result, and deploys a practical evaluation scenario. Part II explores the possibilities of enhancing the speed of core algorithms used in visual object recognition using the computing capabilities of Graphics Processing Units (GPUs). First, we present an implementation of Graph Cut on GPUs, which achieves up to 4x speedup against compared to a CPU implementation. The Graph Cut algorithm has many applications related to visual object recognition such as segmentation and 3D point matching. Second, we present an efficient sparse approximation of kernel matrices for GPUs that can significantly speed up kernel based learning algorithms, which are widely used in object detection and recognition. We present an implementation of the Affinity Propagation clustering algorithm based on this representation, which is about 6 times faster than another GPU implementation based on a conventional sparse matrix representation

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    • 

    corecore