6 research outputs found

    Fast Arithmetics in Artin-Schreier Towers over Finite Fields

    Get PDF
    An Artin-Schreier tower over the finite field F_p is a tower of field extensions generated by polynomials of the form X^p - X - a. Following Cantor and Couveignes, we give algorithms with quasi-linear time complexity for arithmetic operations in such towers. As an application, we present an implementation of Couveignes' algorithm for computing isogenies between elliptic curves using the p-torsion.Comment: 28 pages, 4 figures, 3 tables, uses mathdots.sty, yjsco.sty Submitted to J. Symb. Compu

    Part I:

    Get PDF

    Algorithms in Intersection Theory in the Plane

    Get PDF
    This thesis presents an algorithm to find the local structure of intersections of plane curves. More precisely, we address the question of describing the scheme of the quotient ring of a bivariate zero-dimensional ideal I⊆K[x,y]I\subseteq \mathbb K[x,y], \textit{i.e.} finding the points (maximal ideals of K[x,y]/I\mathbb K[x,y]/I) and describing the regular functions on those points. A natural way to address this problem is via Gr\"obner bases as they reduce the problem of finding the points to a problem of factorisation, and the sheaf of rings of regular functions can be studied with those bases through the division algorithm and localisation. Let I⊆K[x,y]I\subseteq \mathbb K[x,y] be an ideal generated by F\mathcal F, a subset of A[x,y]\mathbb A[x,y] with A↪K\mathbb A\hookrightarrow\mathbb K and K\mathbb K a field. We present an algorithm that features a quadratic convergence to find a Gr\"obner basis of II or its primary component at the origin. We introduce an m\mathfrak m-adic Newton iteration to lift the lexicographic Gr\"obner basis of any finite intersection of zero-dimensional primary components of II if m⊆A\mathfrak m\subseteq \mathbb A is a \textit{good} maximal ideal. It relies on a structural result about the syzygies in such a basis due to Conca \textit{\&} Valla (2008), from which arises an explicit map between ideals in a stratum (or Gr\"obner cell) and points in the associated moduli space. We also qualify what makes a maximal ideal m\mathfrak m suitable for our filtration. When the field K\mathbb K is \textit{large enough}, endowed with an Archimedean or ultrametric valuation, and admits a fraction reconstruction algorithm, we use this result to give a complete m\mathfrak m-adic algorithm to recover G\mathcal G, the Gr\"obner basis of II. We observe that previous results of Lazard that use Hermite normal forms to compute Gr\"obner bases for ideals with two generators can be generalised to a set of nn generators. We use this result to obtain a bound on the height of the coefficients of G\mathcal G and to control the probability of choosing a \textit{good} maximal ideal m⊆A\mathfrak m\subseteq\mathbb A to build the m\mathfrak m-adic expansion of G\mathcal G. Inspired by Pardue (1994), we also give a constructive proof to characterise a Zariski open set of GL2(K)\mathrm{GL}_2(\mathbb K) (with action on K[x,y]\mathbb K[x,y]) that changes coordinates in such a way as to ensure the initial term ideal of a zero-dimensional II becomes Borel-fixed when ∣K∣|\mathbb K| is sufficiently large. This sharpens our analysis to obtain, when A=Z\mathbb A=\mathbb Z or A=k[t]\mathbb A=k[t], a complexity less than cubic in terms of the dimension of Q[x,y]/⟨G⟩\mathbb Q[x,y]/\langle \mathcal G\rangle and softly linear in the height of the coefficients of G\mathcal G. We adapt the resulting method and present the analysis to find the ⟨x,y⟩\langle x,y\rangle-primary component of II. We also discuss the transition towards other primary components via linear mappings, called \emph{untangling} and \emph{tangling}, introduced by van der Hoeven and Lecerf (2017). The two maps form one isomorphism to find points with an isomorphic local structure and, at the origin, bind them. We give a slightly faster tangling algorithm and discuss new applications of these techniques. We show how to extend these ideas to bivariate settings and give a bound on the arithmetic complexity for certain algebras
    corecore