2,748 research outputs found

    Efficient Constellation-Based Map-Merging for Semantic SLAM

    Full text link
    Data association in SLAM is fundamentally challenging, and handling ambiguity well is crucial to achieve robust operation in real-world environments. When ambiguous measurements arise, conservatism often mandates that the measurement is discarded or a new landmark is initialized rather than risking an incorrect association. To address the inevitable `duplicate' landmarks that arise, we present an efficient map-merging framework to detect duplicate constellations of landmarks, providing a high-confidence loop-closure mechanism well-suited for object-level SLAM. This approach uses an incrementally-computable approximation of landmark uncertainty that only depends on local information in the SLAM graph, avoiding expensive recovery of the full system covariance matrix. This enables a search based on geometric consistency (GC) (rather than full joint compatibility (JC)) that inexpensively reduces the search space to a handful of `best' hypotheses. Furthermore, we reformulate the commonly-used interpretation tree to allow for more efficient integration of clique-based pairwise compatibility, accelerating the branch-and-bound max-cardinality search. Our method is demonstrated to match the performance of full JC methods at significantly-reduced computational cost, facilitating robust object-based loop-closure over large SLAM problems.Comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 201

    Geometric data understanding : deriving case specific features

    Get PDF
    There exists a tradition using precise geometric modeling, where uncertainties in data can be considered noise. Another tradition relies on statistical nature of vast quantity of data, where geometric regularity is intrinsic to data and statistical models usually grasp this level only indirectly. This work focuses on point cloud data of natural resources and the silhouette recognition from video input as two real world examples of problems having geometric content which is intangible at the raw data presentation. This content could be discovered and modeled to some degree by such machine learning (ML) approaches like deep learning, but either a direct coverage of geometry in samples or addition of special geometry invariant layer is necessary. Geometric content is central when there is a need for direct observations of spatial variables, or one needs to gain a mapping to a geometrically consistent data representation, where e.g. outliers or noise can be easily discerned. In this thesis we consider transformation of original input data to a geometric feature space in two example problems. The first example is curvature of surfaces, which has met renewed interest since the introduction of ubiquitous point cloud data and the maturation of the discrete differential geometry. Curvature spectra can characterize a spatial sample rather well, and provide useful features for ML purposes. The second example involves projective methods used to video stereo-signal analysis in swimming analytics. The aim is to find meaningful local geometric representations for feature generation, which also facilitate additional analysis based on geometric understanding of the model. The features are associated directly to some geometric quantity, and this makes it easier to express the geometric constraints in a natural way, as shown in the thesis. Also, the visualization and further feature generation is much easier. Third, the approach provides sound baseline methods to more traditional ML approaches, e.g. neural network methods. Fourth, most of the ML methods can utilize the geometric features presented in this work as additional features.Geometriassa käytetään perinteisesti tarkkoja malleja, jolloin datassa esiintyvät epätarkkuudet edustavat melua. Toisessa perinteessä nojataan suuren datamäärän tilastolliseen luonteeseen, jolloin geometrinen säännönmukaisuus on datan sisäsyntyinen ominaisuus, joka hahmotetaan tilastollisilla malleilla ainoastaan epäsuorasti. Tämä työ keskittyy kahteen esimerkkiin: luonnonvaroja kuvaaviin pistepilviin ja videohahmontunnistukseen. Nämä ovat todellisia ongelmia, joissa geometrinen sisältö on tavoittamattomissa raakadatan tasolla. Tämä sisältö voitaisiin jossain määrin löytää ja mallintaa koneoppimisen keinoin, esim. syväoppimisen avulla, mutta joko geometria pitää kattaa suoraan näytteistämällä tai tarvitaan neuronien lisäkerros geometrisia invariansseja varten. Geometrinen sisältö on keskeinen, kun tarvitaan suoraa avaruudellisten suureiden havainnointia, tai kun tarvitaan kuvaus geometrisesti yhtenäiseen dataesitykseen, jossa poikkeavat näytteet tai melu voidaan helposti erottaa. Tässä työssä tarkastellaan datan muuntamista geometriseen piirreavaruuteen kahden esimerkkiohjelman suhteen. Ensimmäinen esimerkki on pintakaarevuus, joka on uudelleen virinneen kiinnostuksen kohde kaikkialle saatavissa olevan datan ja diskreetin geometrian kypsymisen takia. Kaarevuusspektrit voivat luonnehtia avaruudellista kohdetta melko hyvin ja tarjota koneoppimisessa hyödyllisiä piirteitä. Toinen esimerkki koskee projektiivisia menetelmiä käytettäessä stereovideosignaalia uinnin analytiikkaan. Tavoite on löytää merkityksellisiä paikallisen geometrian esityksiä, jotka samalla mahdollistavat muun geometrian ymmärrykseen perustuvan analyysin. Piirteet liittyvät suoraan johonkin geometriseen suureeseen, ja tämä helpottaa luonnollisella tavalla geometristen rajoitteiden käsittelyä, kuten väitöstyössä osoitetaan. Myös visualisointi ja lisäpiirteiden luonti muuttuu helpommaksi. Kolmanneksi, lähestymistapa suo selkeän vertailumenetelmän perinteisemmille koneoppimisen lähestymistavoille, esim. hermoverkkomenetelmille. Neljänneksi, useimmat koneoppimismenetelmät voivat hyödyntää tässä työssä esitettyjä geometrisia piirteitä lisäämällä ne muiden piirteiden joukkoon

    Extraction of Vehicle Groups in Airborne Lidar Point Clouds with Two-Level Point Processes

    Get PDF
    In this paper we present a new object based hierarchical model for joint probabilistic extraction of vehicles and groups of corresponding vehicles - called traffic segments - in airborne Lidar point clouds collected from dense urban areas. Firstly, the 3-D point set is classified into terrain, vehicle, roof, vegetation and clutter classes. Then the points with the corresponding class labels and echo strength (i.e. intensity) values are projected to the ground. In the obtained 2-D class and intensity maps we approximate the top view projections of vehicles by rectangles. Since our tasks are simultaneously the extraction of the rectangle population which describes the position, size and orientation of the vehicles and grouping the vehicles into the traffic segments, we propose a hierarchical, Two-Level Marked Point Process (L2MPP) model for the problem. The output vehicle and traffic segment configurations are extracted by an iterative stochastic optimization algorithm. We have tested the proposed method with real data of a discrete return Lidar sensor providing up to four range measurements for each laser pulse. Using manually annotated Ground Truth information on a data set containing 1009 vehicles, we provide quantitative evaluation results showing that the L2MPP model surpasses two earlier grid-based approaches, a 3-D point-cloud-based process and a single layer MPP solution. The accuracy of the proposed method measured in F-rate is 97% at object level, 83% at pixel level and 95% at group level

    Urban Traffic Monitoring from LIDAR Data with a Two-Level Marked Point Process Model

    Get PDF
    In this report we present a new object based hierarchical model for joint probabilistic extraction of vehicles and coherent vehicle groups - called traffic segments - in airborne and terrestrial LIDAR point clouds collected from crowded urban areas. Firstly, the 3D point set is segmented into terrain, vehicle, roof, vegetation and clutter classes. Then the points with the corresponding class labels and intensity values are projected to the ground plane. In the obtained 2D class and intensity maps we approximate the top view projections of vehicles by rectangles. Since our tasks are simultaneously the extraction of the rectangle population which describes the position, size and orientation of the vehicles and grouping the vehicles into the traffic segments, we propose a hierarchical, Two-Level Marked Point Process (L2MPP) model for the problem. The output vehicle and traffic segment configurations are extracted by an iterative stochastic optimization algorithm. We have tested the proposed method with real aerial and terrestrial LiDAR measurements. Our aerial data set contains 471 vehicles, and we provide quantitative object and pixel level comparions results versus two state-of-the-art solutions

    Illumination Invariant Outdoor Perception

    Get PDF
    This thesis proposes the use of a multi-modal sensor approach to achieve illumination invariance in images taken in outdoor environments. The approach is automatic in that it does not require user input for initialisation, and is not reliant on the input of atmospheric radiative transfer models. While it is common to use pixel colour and intensity as features in high level vision algorithms, their performance is severely limited by the uncontrolled lighting and complex geometric structure of outdoor scenes. The appearance of a material is dependent on the incident illumination, which can vary due to spatial and temporal factors. This variability causes identical materials to appear differently depending on their location. Illumination invariant representations of the scene can potentially improve the performance of high level vision algorithms as they allow discrimination between pixels to occur based on the underlying material characteristics. The proposed approach to obtaining illumination invariance utilises fused image and geometric data. An approximation of the outdoor illumination is used to derive per-pixel scaling factors. This has the effect of relighting the entire scene using a single illuminant that is common in terms of colour and intensity for all pixels. The approach is extended to radiometric normalisation and the multi-image scenario, meaning that the resultant dataset is both spatially and temporally illumination invariant. The proposed illumination invariance approach is evaluated on several datasets and shows that spatial and temporal invariance can be achieved without loss of spectral dimensionality. The system requires very few tuning parameters, meaning that expert knowledge is not required in order for its operation. This has potential implications for robotics and remote sensing applications where perception systems play an integral role in developing a rich understanding of the scene

    Performance specifications for a meteorological satellite lidar Final report

    Get PDF
    Cirrus cloud cover observation capability and performance specifications for meteorological satellite lida
    corecore