2,504 research outputs found

    Scheduling theory since 1981: an annotated bibliography

    Get PDF

    Approximate Deadline-Scheduling with Precedence Constraints

    Full text link
    We consider the classic problem of scheduling a set of n jobs non-preemptively on a single machine. Each job j has non-negative processing time, weight, and deadline, and a feasible schedule needs to be consistent with chain-like precedence constraints. The goal is to compute a feasible schedule that minimizes the sum of penalties of late jobs. Lenstra and Rinnoy Kan [Annals of Disc. Math., 1977] in their seminal work introduced this problem and showed that it is strongly NP-hard, even when all processing times and weights are 1. We study the approximability of the problem and our main result is an O(log k)-approximation algorithm for instances with k distinct job deadlines

    Preemptive scheduling on uniform parallel machines with controllable job processing times

    Get PDF
    In this paper, we provide a unified approach to solving preemptive scheduling problems with uniform parallel machines and controllable processing times. We demonstrate that a single criterion problem of minimizing total compression cost subject to the constraint that all due dates should be met can be formulated in terms of maximizing a linear function over a generalized polymatroid. This justifies applicability of the greedy approach and allows us to develop fast algorithms for solving the problem with arbitrary release and due dates as well as its special case with zero release dates and a common due date. For the bicriteria counterpart of the latter problem we develop an efficient algorithm that constructs the trade-off curve for minimizing the compression cost and the makespan

    A Predictive-reactive Approach for JSP with Uncertain Processing Times

    Get PDF
    The paper is supported by the Asia-Link project funded by the European Commission (CN/ASIA-LINK/024 (109093)), the National Natural Science Foundation of China (50705076, 50705077), and the National Hi-Tech R&D Program of China (2007AA04Z187)JSP with discretely controllable processing times (JSP-DCPT) that are perturbed in a turbulent environment is formulated, based on which, a time-cost tradeoff based predictive-reactive scheduling approach is proposed for solving the problem. In the predictive scheduling process, on the basis of a proposed three-step decomposition approach for solving JSP-DCPT, a solution initialization algorithm is presented by incorporating a hybrid algorithm of tabu search and simulated annealing and a fast elitist non-dominated sorting genetic algorithm; in the reactive scheduling process, Pareto-optimal schedules are generated, among which every schedule that is not dominated by any initial schedule can be selected as the responding schedule so as to maintain optimality of the objective that is to minimize both the makespan and the cost. Experimental simulations demonstrate the effectiveness of the proposed approach

    Minimizing weighted total earliness, total tardiness and setup costs

    Get PDF
    The paper considers a (static) portfolio system that satisfies adding-up contraints and the gross substitution theorem. The paper shows the relationship of the two conditions to the weak dominant diagonal property of the matrix of interest rate elasticities. This enables to investigate the impact of simultaneous changes in interest rates on the asset demands.

    Utility-Aware Scheduling of Stochastic Real-Time Systems

    Get PDF
    Time utility functions offer a reasonably general way to describe the complex timing constraints of real-time and cyber-physical systems. However, utility-aware scheduling policy design is an open research problem. In particular, scheduling policies that optimize expected utility accrual are needed for real-time and cyber-physical domains. This dissertation addresses the problem of utility-aware scheduling for systems with periodic real-time task sets and stochastic non-preemptive execution intervals. We model these systems as Markov Decision Processes. This model provides an evaluation framework by which different scheduling policies can be compared. By solving the Markov Decision Process we can derive value-optimal scheduling policies for moderate sized problems. However, the time and memory complexity of computing and storing value-optimal scheduling policies also necessitates the exploration of other more scalable solutions. We consider heuristic schedulers, including a generalization we have developed for the existing Utility Accrual Packet Scheduling Algorithm. We compare several heuristics under soft and hard real-time conditions, different load conditions, and different classes of time utility functions. Based on these evaluations we present guidelines for which heuristics are best suited to particular scheduling criteria. Finally, we address the memory complexity of value-optimal scheduling, and examine trade-offs between optimality and memory complexity. We show that it is possible to derive good low complexity scheduling decision functions based on a synthesis of heuristics and reduced-memory approximations of the value-optimal scheduling policy

    On the Fine-Grained Parameterized Complexity of Partial Scheduling to Minimize the Makespan

    Get PDF
    We study a natural variant of scheduling that we call partial scheduling: In this variant an instance of a scheduling problem along with an integer k is given and one seeks an optimal schedule where not all, but only k jobs, have to be processed. Specifically, we aim to determine the fine-grained parameterized complexity of partial scheduling problems parameterized by k for all variants of scheduling problems that minimize the makespan and involve unit/arbitrary processing times, identical/unrelated parallel machines, release/due dates, and precedence constraints. That is, we investigate whether algorithms with runtimes of the type f(k)n^?(1) or n^?(f(k)) exist for a function f that is as small as possible. Our contribution is two-fold: First, we categorize each variant to be either in ?, NP-complete and fixed-parameter tractable by k, or ?[1]-hard parameterized by k. Second, for many interesting cases we further investigate the run time on a finer scale and obtain run times that are (almost) optimal assuming the Exponential Time Hypothesis. As one of our main technical contributions, we give an ?(8^k k(|V|+|E|)) time algorithm to solve instances of partial scheduling problems minimizing the makespan with unit length jobs, precedence constraints and release dates, where G = (V,E) is the graph with precedence constraints
    • …
    corecore