16,034 research outputs found

    Inference for Differential Equation Models using Relaxation via Dynamical Systems

    Full text link
    Statistical regression models whose mean functions are represented by ordinary differential equations (ODEs) can be used to describe phenomenons dynamical in nature, which are abundant in areas such as biology, climatology and genetics. The estimation of parameters of ODE based models is essential for understanding its dynamics, but the lack of an analytical solution of the ODE makes the parameter estimation challenging. The aim of this paper is to propose a general and fast framework of statistical inference for ODE based models by relaxation of the underlying ODE system. Relaxation is achieved by a properly chosen numerical procedure, such as the Runge-Kutta, and by introducing additive Gaussian noises with small variances. Consequently, filtering methods can be applied to obtain the posterior distribution of the parameters in the Bayesian framework. The main advantage of the proposed method is computation speed. In a simulation study, the proposed method was at least 14 times faster than the other methods. Theoretical results which guarantee the convergence of the posterior of the approximated dynamical system to the posterior of true model are presented. Explicit expressions are given that relate the order and the mesh size of the Runge-Kutta procedure to the rate of convergence of the approximated posterior as a function of sample size

    Estimating the Expected Value of Partial Perfect Information in Health Economic Evaluations using Integrated Nested Laplace Approximation

    Get PDF
    The Expected Value of Perfect Partial Information (EVPPI) is a decision-theoretic measure of the "cost" of parametric uncertainty in decision making used principally in health economic decision making. Despite this decision-theoretic grounding, the uptake of EVPPI calculations in practice has been slow. This is in part due to the prohibitive computational time required to estimate the EVPPI via Monte Carlo simulations. However, recent developments have demonstrated that the EVPPI can be estimated by non-parametric regression methods, which have significantly decreased the computation time required to approximate the EVPPI. Under certain circumstances, high-dimensional Gaussian Process regression is suggested, but this can still be prohibitively expensive. Applying fast computation methods developed in spatial statistics using Integrated Nested Laplace Approximations (INLA) and projecting from a high-dimensional into a low-dimensional input space allows us to decrease the computation time for fitting these high-dimensional Gaussian Processes, often substantially. We demonstrate that the EVPPI calculated using our method for Gaussian Process regression is in line with the standard Gaussian Process regression method and that despite the apparent methodological complexity of this new method, R functions are available in the package BCEA to implement it simply and efficiently

    Bayesian Analysis of ODE's: solver optimal accuracy and Bayes factors

    Full text link
    In most relevant cases in the Bayesian analysis of ODE inverse problems, a numerical solver needs to be used. Therefore, we cannot work with the exact theoretical posterior distribution but only with an approximate posterior deriving from the error in the numerical solver. To compare a numerical and the theoretical posterior distributions we propose to use Bayes Factors (BF), considering both of them as models for the data at hand. We prove that the theoretical vs a numerical posterior BF tends to 1, in the same order (of the step size used) as the numerical forward map solver does. For higher order solvers (eg. Runge-Kutta) the Bayes Factor is already nearly 1 for step sizes that would take far less computational effort. Considerable CPU time may be saved by using coarser solvers that nevertheless produce practically error free posteriors. Two examples are presented where nearly 90% CPU time is saved while all inference results are identical to using a solver with a much finer time step.Comment: 28 pages, 6 figure

    Spectral Density-Based and Measure-Preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs

    Get PDF
    Approximate Bayesian Computation (ABC) has become one of the major tools of likelihood-free statistical inference in complex mathematical models. Simultaneously, stochastic differential equations (SDEs) have developed to an established tool for modelling time dependent, real world phenomena with underlying random effects. When applying ABC to stochastic models, two major difficulties arise. First, the derivation of effective summary statistics and proper distances is particularly challenging, since simulations from the stochastic process under the same parameter configuration result in different trajectories. Second, exact simulation schemes to generate trajectories from the stochastic model are rarely available, requiring the derivation of suitable numerical methods for the synthetic data generation. To obtain summaries that are less sensitive to the intrinsic stochasticity of the model, we propose to build up the statistical method (e.g., the choice of the summary statistics) on the underlying structural properties of the model. Here, we focus on the existence of an invariant measure and we map the data to their estimated invariant density and invariant spectral density. Then, to ensure that these model properties are kept in the synthetic data generation, we adopt measure-preserving numerical splitting schemes. The derived property-based and measure-preserving ABC method is illustrated on the broad class of partially observed Hamiltonian type SDEs, both with simulated data and with real electroencephalography (EEG) data. The proposed ingredients can be incorporated into any type of ABC algorithm and directly applied to all SDEs that are characterised by an invariant distribution and for which a measure-preserving numerical method can be derived.Comment: 35 pages, 21 figure
    • …
    corecore