4,425 research outputs found

    Low-rank updates and a divide-and-conquer method for linear matrix equations

    Get PDF
    Linear matrix equations, such as the Sylvester and Lyapunov equations, play an important role in various applications, including the stability analysis and dimensionality reduction of linear dynamical control systems and the solution of partial differential equations. In this work, we present and analyze a new algorithm, based on tensorized Krylov subspaces, for quickly updating the solution of such a matrix equation when its coefficients undergo low-rank changes. We demonstrate how our algorithm can be utilized to accelerate the Newton method for solving continuous-time algebraic Riccati equations. Our algorithm also forms the basis of a new divide-and-conquer approach for linear matrix equations with coefficients that feature hierarchical low-rank structure, such as HODLR, HSS, and banded matrices. Numerical experiments demonstrate the advantages of divide-and-conquer over existing approaches, in terms of computational time and memory consumption

    A fast semi-direct least squares algorithm for hierarchically block separable matrices

    Full text link
    We present a fast algorithm for linear least squares problems governed by hierarchically block separable (HBS) matrices. Such matrices are generally dense but data-sparse and can describe many important operators including those derived from asymptotically smooth radial kernels that are not too oscillatory. The algorithm is based on a recursive skeletonization procedure that exposes this sparsity and solves the dense least squares problem as a larger, equality-constrained, sparse one. It relies on a sparse QR factorization coupled with iterative weighted least squares methods. In essence, our scheme consists of a direct component, comprised of matrix compression and factorization, followed by an iterative component to enforce certain equality constraints. At most two iterations are typically required for problems that are not too ill-conditioned. For an M×NM \times N HBS matrix with MNM \geq N having bounded off-diagonal block rank, the algorithm has optimal O(M+N)\mathcal{O} (M + N) complexity. If the rank increases with the spatial dimension as is common for operators that are singular at the origin, then this becomes O(M+N)\mathcal{O} (M + N) in 1D, O(M+N3/2)\mathcal{O} (M + N^{3/2}) in 2D, and O(M+N2)\mathcal{O} (M + N^{2}) in 3D. We illustrate the performance of the method on both over- and underdetermined systems in a variety of settings, with an emphasis on radial basis function approximation and efficient updating and downdating.Comment: 24 pages, 8 figures, 6 tables; to appear in SIAM J. Matrix Anal. App

    Self-consistent theory of large amplitude collective motion: Applications to approximate quantization of non-separable systems and to nuclear physics

    Get PDF
    The goal of the present account is to review our efforts to obtain and apply a ``collective'' Hamiltonian for a few, approximately decoupled, adiabatic degrees of freedom, starting from a Hamiltonian system with more or many more degrees of freedom. The approach is based on an analysis of the classical limit of quantum-mechanical problems. Initially, we study the classical problem within the framework of Hamiltonian dynamics and derive a fully self-consistent theory of large amplitude collective motion with small velocities. We derive a measure for the quality of decoupling of the collective degree of freedom. We show for several simple examples, where the classical limit is obvious, that when decoupling is good, a quantization of the collective Hamiltonian leads to accurate descriptions of the low energy properties of the systems studied. In nuclear physics problems we construct the classical Hamiltonian by means of time-dependent mean-field theory, and we transcribe our formalism to this case. We report studies of a model for monopole vibrations, of 28^{28}Si with a realistic interaction, several qualitative models of heavier nuclei, and preliminary results for a more realistic approach to heavy nuclei. Other topics included are a nuclear Born-Oppenheimer approximation for an {\em ab initio} quantum theory and a theory of the transfer of energy between collective and non-collective degrees of freedom when the decoupling is not exact. The explicit account is based on the work of the authors, but a thorough survey of other work is included.Comment: 203 pages, many figure
    corecore