75 research outputs found

    Stable, Robust and Super Fast Reconstruction of Tensors Using Multi-Way Projections

    Get PDF
    In the framework of multidimensional Compressed Sensing (CS), we introduce an analytical reconstruction formula that allows one to recover an NNth-order (I1×I2×⋯×IN)(I_1\times I_2\times \cdots \times I_N) data tensor X‾\underline{\mathbf{X}} from a reduced set of multi-way compressive measurements by exploiting its low multilinear-rank structure. Moreover, we show that, an interesting property of multi-way measurements allows us to build the reconstruction based on compressive linear measurements taken only in two selected modes, independently of the tensor order NN. In addition, it is proved that, in the matrix case and in a particular case with 33rd-order tensors where the same 2D sensor operator is applied to all mode-3 slices, the proposed reconstruction X‾τ\underline{\mathbf{X}}_\tau is stable in the sense that the approximation error is comparable to the one provided by the best low-multilinear-rank approximation, where τ\tau is a threshold parameter that controls the approximation error. Through the analysis of the upper bound of the approximation error we show that, in the 2D case, an optimal value for the threshold parameter τ=τ0>0\tau=\tau_0 > 0 exists, which is confirmed by our simulation results. On the other hand, our experiments on 3D datasets show that very good reconstructions are obtained using τ=0\tau=0, which means that this parameter does not need to be tuned. Our extensive simulation results demonstrate the stability and robustness of the method when it is applied to real-world 2D and 3D signals. A comparison with state-of-the-arts sparsity based CS methods specialized for multidimensional signals is also included. A very attractive characteristic of the proposed method is that it provides a direct computation, i.e. it is non-iterative in contrast to all existing sparsity based CS algorithms, thus providing super fast computations, even for large datasets.Comment: Submitted to IEEE Transactions on Signal Processin

    Low rank tensor recovery via iterative hard thresholding

    Full text link
    We study extensions of compressive sensing and low rank matrix recovery (matrix completion) to the recovery of low rank tensors of higher order from a small number of linear measurements. While the theoretical understanding of low rank matrix recovery is already well-developed, only few contributions on the low rank tensor recovery problem are available so far. In this paper, we introduce versions of the iterative hard thresholding algorithm for several tensor decompositions, namely the higher order singular value decomposition (HOSVD), the tensor train format (TT), and the general hierarchical Tucker decomposition (HT). We provide a partial convergence result for these algorithms which is based on a variant of the restricted isometry property of the measurement operator adapted to the tensor decomposition at hand that induces a corresponding notion of tensor rank. We show that subgaussian measurement ensembles satisfy the tensor restricted isometry property with high probability under a certain almost optimal bound on the number of measurements which depends on the corresponding tensor format. These bounds are extended to partial Fourier maps combined with random sign flips of the tensor entries. Finally, we illustrate the performance of iterative hard thresholding methods for tensor recovery via numerical experiments where we consider recovery from Gaussian random measurements, tensor completion (recovery of missing entries), and Fourier measurements for third order tensors.Comment: 34 page

    Blind Multilinear Identification

    Full text link
    We discuss a technique that allows blind recovery of signals or blind identification of mixtures in instances where such recovery or identification were previously thought to be impossible: (i) closely located or highly correlated sources in antenna array processing, (ii) highly correlated spreading codes in CDMA radio communication, (iii) nearly dependent spectra in fluorescent spectroscopy. This has important implications --- in the case of antenna array processing, it allows for joint localization and extraction of multiple sources from the measurement of a noisy mixture recorded on multiple sensors in an entirely deterministic manner. In the case of CDMA, it allows the possibility of having a number of users larger than the spreading gain. In the case of fluorescent spectroscopy, it allows for detection of nearly identical chemical constituents. The proposed technique involves the solution of a bounded coherence low-rank multilinear approximation problem. We show that bounded coherence allows us to establish existence and uniqueness of the recovered solution. We will provide some statistical motivation for the approximation problem and discuss greedy approximation bounds. To provide the theoretical underpinnings for this technique, we develop a corresponding theory of sparse separable decompositions of functions, including notions of rank and nuclear norm that specialize to the usual ones for matrices and operators but apply to also hypermatrices and tensors.Comment: 20 pages, to appear in IEEE Transactions on Information Theor

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System

    Structured Tensor Recovery and Decomposition

    Get PDF
    Tensors, a.k.a. multi-dimensional arrays, arise naturally when modeling higher-order objects and relations. Among ubiquitous applications including image processing, collaborative filtering, demand forecasting and higher-order statistics, there are two recurring themes in general: tensor recovery and tensor decomposition. The first one aims to recover the underlying tensor from incomplete information; the second one is to study a variety of tensor decompositions to represent the array more concisely and moreover to capture the salient characteristics of the underlying data. Both topics are respectively addressed in this thesis. Chapter 2 and Chapter 3 focus on low-rank tensor recovery (LRTR) from both theoretical and algorithmic perspectives. In Chapter 2, we first provide a negative result to the sum of nuclear norms (SNN) model---an existing convex model widely used for LRTR; then we propose a novel convex model and prove this new model is better than the SNN model in terms of the number of measurements required to recover the underlying low-rank tensor. In Chapter 3, we first build up the connection between robust low-rank tensor recovery and the compressive principle component pursuit (CPCP), a convex model for robust low-rank matrix recovery. Then we focus on developing convergent and scalable optimization methods to solve the CPCP problem. In specific, our convergent method, proposed by combining classical ideas from Frank-Wolfe and proximal methods, achieves scalability with linear per-iteration cost. Chapter 4 generalizes the successive rank-one approximation (SROA) scheme for matrix eigen-decomposition to a special class of tensors called symmetric and orthogonally decomposable (SOD) tensor. We prove that the SROA scheme can robustly recover the symmetric canonical decomposition of the underlying SOD tensor even in the presence of noise. Perturbation bounds, which can be regarded as a higher-order generalization of the Davis-Kahan theorem, are provided in terms of the noise magnitude

    Low-rank Tensor Recovery

    Get PDF
    Low-rank tensor recovery is an interesting subject from both the theoretical and application point of view. On one side, it is a natural extension of the sparse vector and low-rank matrix recovery problem. On the other side, estimating a low-rank tensor has applications in many different areas such as machine learning, video compression, and seismic data interpolation. In this thesis, two approaches are introduced. The first approach is a convex optimization approach and could be considered as a tractable extension of ell1ell_1-minimization for sparse vector and nuclear norm minimization for matrix recovery to tensor scenario. It is based on theta bodies – a recently introduced tool from real algebraic geometry. In particular, theta bodies of appropriately defined polynomial ideal correspond to the unit-theta norm balls. These unit-theta norm balls are relaxations of the unit-tensor-nuclear norm ball. Thus, in this case, we consider a canonical tensor format. The method requires computing the reduced Groebner basis (with respect to the graded reverse lexicographic ordering) of the appropriately defined polynomial ideal. Numerical results for third-order tensor recovery via theta1theta_1-norm are provided. The second approach is a generalization of iterative hard thresholding algorithm for sparse vector and low-rank matrix recovery to tensor scenario (tensor IHT or TIHT algorithm). Here, we consider the Tucker format, the tensor train decomposition, and the hierarchical Tucker decomposition. The analysis of the algorithm is based on a version of the restricted isometry property (tensor RIP or TRIP) adapted to the tensor decomposition at hand. We show that subgaussian measurement ensembles satisfy TRIP with high probability under an almost optimal condition on the number of measurements. Additionally, we show that partial Fourier maps combined with random sign flips of the tensor entries satisfy TRIP with high probability. Under the assumption that the linear operator satisfies TRIP and under an additional assumption on the thresholding operator, we provide a linear convergence result for the TIHT algorithm. Finally, we present numerical results on low-Tucker-rank third-order tensors via partial Fourier maps combined with random sign flips of tensor entries, tensor completion, and Gaussian measurement ensembles

    Scalable Tensor Factorizations for Incomplete Data

    Full text link
    The problem of incomplete data - i.e., data with missing or unknown values - in multi-way arrays is ubiquitous in biomedical signal processing, network traffic analysis, bibliometrics, social network analysis, chemometrics, computer vision, communication networks, etc. We consider the problem of how to factorize data sets with missing values with the goal of capturing the underlying latent structure of the data and possibly reconstructing missing values (i.e., tensor completion). We focus on one of the most well-known tensor factorizations that captures multi-linear structure, CANDECOMP/PARAFAC (CP). In the presence of missing data, CP can be formulated as a weighted least squares problem that models only the known entries. We develop an algorithm called CP-WOPT (CP Weighted OPTimization) that uses a first-order optimization approach to solve the weighted least squares problem. Based on extensive numerical experiments, our algorithm is shown to successfully factorize tensors with noise and up to 99% missing data. A unique aspect of our approach is that it scales to sparse large-scale data, e.g., 1000 x 1000 x 1000 with five million known entries (0.5% dense). We further demonstrate the usefulness of CP-WOPT on two real-world applications: a novel EEG (electroencephalogram) application where missing data is frequently encountered due to disconnections of electrodes and the problem of modeling computer network traffic where data may be absent due to the expense of the data collection process
    • …
    corecore