89 research outputs found

    Enabling Deep Intelligence on Embedded Systems

    Get PDF
    As deep learning for resource-constrained systems become more popular, we see an increased number of intelligent embedded systems such as IoT devices, robots, autonomous vehicles, and the plethora of portable, wearable, and mobile devices that are feature-packed with a wide variety of machine learning tasks. However, the performance of DNNs (deep neural networks) running on an embedded system is significantly limited by the platform's CPU, memory, and battery-size; and their scope is limited to simplistic inference tasks only. This dissertation proposes on-device deep learning algorithms and supporting hardware designs, enabling embedded systems to efficiently perform deep intelligent tasks (i.e., deep neural networks) that are high-memory-footprint, compute-intensive, and energy-hungry beyond their limited computing resources. We name such on-device deep intelligence on embedded systems as Embedded Deep Intelligence. Specifically, we introduce resource-aware learning strategies devised to overcome the four fundamental constraints of embedded systems imposed on the way towards Embedded Deep Intelligence, i.e., in-memory multitask learning via introducing the concept of Neural Weight Virtualization, adaptive real-time learning via introducing the concept of SubFlow, opportunistic accelerated learning via introducing the concept of Neuro.ZERO, and energy-aware intermittent learning, which tackles the problems of the small size of memory, dynamic timing constraint, low-computing capability, and limited energy, respectively. Once deployed in the field with the proposed resource-aware learning strategies, embedded systems are not only able to perform deep inference tasks on sensor data but also update and re-train their learning models at run-time without requiring any help from any external system. Such an on-device learning capability of Embedded Deep Intelligence makes an embedded intelligent system real-time, privacy-aware, secure, autonomous, untethered, responsive, and adaptive without concern for its limited resources.Doctor of Philosoph

    Design and Evolution of Deep Convolutional Neural Networks in Image Classification – A Review

    Get PDF
    Convolutional Neural Network(CNN) is a well-known computer vision approach successfully applied for various classification and recognition problems. It has an outstanding power to identify patterns in 1D and 2D data. Though invented in 80's, it became hugely successful after LeCun's work on digit identification. Several CNN based models have been developed to record splendid performance on ImageNet and other databases. Ability of the CNN in learning complex features at different hierarchy from the data had made it the most successful among deep learning algorithms. Innovative architectural designs and hyperaparameter optimization have greatly improved the efficiency of CNN in pattern recognition. This review majorly focuses on the evolution and history of CNN models. Landmark CNN architectures are discussed with their categorization depending on various parameters. In addition, this also explores the architectural details of different layers, activation function, optimizers and other hyperparameters used by CNN. Review concludes by shedding the light on the applications and observations to be considered while designing the network

    Design and Evolution of Deep Convolutional Neural Networks in Image Classification – A Review

    Get PDF
    Convolutional Neural Network(CNN) is a well-known computer vision approach successfully applied for various classification and recognition problems. It has an outstanding power to identify patterns in 1D and 2D data. Though invented in 80's, it became hugely successful after LeCun's work on digit identification. Several CNN based models have been developed to record splendid performance on ImageNet and other databases. Ability of the CNN in learning complex features at different hierarchy from the data had made it the most successful among deep learning algorithms. Innovative architectural designs and hyperaparameter optimization have greatly improved the efficiency of CNN in pattern recognition. This review majorly focuses on the evolution and history of CNN models. Landmark CNN architectures are discussed with their categorization depending on various parameters. In addition, this also explores the architectural details of different layers, activation function, optimizers and other hyperparameters used by CNN. Review concludes by shedding the light on the applications and observations to be considered while designing the network

    SCALING UP TASK EXECUTION ON RESOURCE-CONSTRAINED SYSTEMS

    Get PDF
    The ubiquity of executing machine learning tasks on embedded systems with constrained resources has made efficient execution of neural networks on these systems under the CPU, memory, and energy constraints increasingly important. Different from high-end computing systems where resources are abundant and reliable, resource-constrained systems only have limited computational capability, limited memory, and limited energy supply. This dissertation focuses on how to take full advantage of the limited resources of these systems in order to improve task execution efficiency from different aspects of the execution pipeline. While the existing literature primarily aims at solving the problem by shrinking the model size according to the resource constraints, this dissertation aims to improve the execution efficiency for a given set of tasks from the following two aspects. Firstly, we propose SmartON, which is the first batteryless active event detection system that considers both the event arrival pattern as well as the harvested energy to determine when the system should wake up and what the duty cycle should be. Secondly, we propose Antler, which exploits the affinity between all pairs of tasks in a multitask inference system to construct a compact graph representation of the task set for a given overall size budget. To achieve the aforementioned algorithmic proposals, we propose the following hardware solutions. One is a controllable capacitor array that can expand the system’s energy storage on-the-fly. The other is a FRAM array that can accommodate multiple neural networks running on one system.Doctor of Philosoph

    Data-Driven Methods for Data Center Operations Support

    Get PDF
    During the last decade, cloud technologies have been evolving at an impressive pace, such that we are now living in a cloud-native era where developers can leverage on an unprecedented landscape of (possibly managed) services for orchestration, compute, storage, load-balancing, monitoring, etc. The possibility to have on-demand access to a diverse set of configurable virtualized resources allows for building more elastic, flexible and highly-resilient distributed applications. Behind the scenes, cloud providers sustain the heavy burden of maintaining the underlying infrastructures, consisting in large-scale distributed systems, partitioned and replicated among many geographically dislocated data centers to guarantee scalability, robustness to failures, high availability and low latency. The larger the scale, the more cloud providers have to deal with complex interactions among the various components, such that monitoring, diagnosing and troubleshooting issues become incredibly daunting tasks. To keep up with these challenges, development and operations practices have undergone significant transformations, especially in terms of improving the automations that make releasing new software, and responding to unforeseen issues, faster and sustainable at scale. The resulting paradigm is nowadays referred to as DevOps. However, while such automations can be very sophisticated, traditional DevOps practices fundamentally rely on reactive mechanisms, that typically require careful manual tuning and supervision from human experts. To minimize the risk of outages—and the related costs—it is crucial to provide DevOps teams with suitable tools that can enable a proactive approach to data center operations. This work presents a comprehensive data-driven framework to address the most relevant problems that can be experienced in large-scale distributed cloud infrastructures. These environments are indeed characterized by a very large availability of diverse data, collected at each level of the stack, such as: time-series (e.g., physical host measurements, virtual machine or container metrics, networking components logs, application KPIs); graphs (e.g., network topologies, fault graphs reporting dependencies among hardware and software components, performance issues propagation networks); and text (e.g., source code, system logs, version control system history, code review feedbacks). Such data are also typically updated with relatively high frequency, and subject to distribution drifts caused by continuous configuration changes to the underlying infrastructure. In such a highly dynamic scenario, traditional model-driven approaches alone may be inadequate at capturing the complexity of the interactions among system components. DevOps teams would certainly benefit from having robust data-driven methods to support their decisions based on historical information. For instance, effective anomaly detection capabilities may also help in conducting more precise and efficient root-cause analysis. Also, leveraging on accurate forecasting and intelligent control strategies would improve resource management. Given their ability to deal with high-dimensional, complex data, Deep Learning-based methods are the most straightforward option for the realization of the aforementioned support tools. On the other hand, because of their complexity, this kind of models often requires huge processing power, and suitable hardware, to be operated effectively at scale. These aspects must be carefully addressed when applying such methods in the context of data center operations. Automated operations approaches must be dependable and cost-efficient, not to degrade the services they are built to improve. i

    An overview of machine learning and 5G for people with disabilities

    Get PDF
    Currently, over a billion people, including children (or about 15% of the world’s population), are estimated to be living with disability, and this figure is going to increase to beyond two billion by 2050. People with disabilities generally experience poorer levels of health, fewer achievements in education, fewer economic opportunities, and higher rates of poverty. Artificial intelligence and 5G can make major contributions towards the assistance of people with disabilities, so they can achieve a good quality of life. In this paper, an overview of machine learning and 5G for people with disabilities is provided. For this purpose, the proposed 5G network slicing architecture for disabled people is introduced. Different application scenarios and their main benefits are considered to illustrate the interaction of machine learning and 5G. Critical challenges have been identified and addressed.This work has been supported by the Agencia Estatal de Investigación of Ministerio de Ciencia e Innovación of Spain under project PID2019-108713RB-C51 MCIN/ AEI /10.13039/501100011033.Postprint (published version
    • …
    corecore