516 research outputs found

    Construction of a complete set of orthogonal Fourier-Mellin moment invariants for pattern recognition applications

    No full text
    International audienceThe completeness property of a set of invariant descriptors is of fundamental importance from the theoretical as well as the practical points of view. In this paper, we propose a general approach to construct a complete set of orthogonal Fourier-Mellin moment (OFMM) invariants. By establishing a relationship between the OFMMs of the original image and those of the image having the same shape but distinct orientation and scale, a complete set of scale and rotation invariants is derived. The efficiency and the robustness to noise of the method for recognition tasks are shown by comparing it with some existing methods on several data sets

    Filter-generating system of Zernike polynomials

    Get PDF
    This work proposes a new approach to find the generating function (GF) of the Zernike polynomials in two dimensional form. Combining the methods of GFs and discrete-time systems, we can develop two dimensional digital systems for systematic generation of entire orders of Zernike polynomials. We establish two different formulas for the GF of the radial Zernike polynomials based on both the degree and the azimuthal order of the radial polynomials. In this paper, we use four terms recurrence relation instead of the ordinary three terms recursion to calculate the radial Zernike polynomials and their GFs using unilateral 2D Z-transform. A spatio-temporal implementation scheme is developed for generation of the radial Zernike polynomials. The case study shows a reliable way to evaluate Zernike polynomials with arbitrary degrees and azimuthal orders

    A hybrid framework for nonlinear dynamic simulations including full-field optical measurements and image decomposition algorithms

    Get PDF
    Innovative designs of transport vehicles need to be validated in order to demonstrate reliability and provide confidence. It is normal practice to study the mechanical response of the structural elements by comparing numerical results obtained from finite element simulation models with results obtained from experiment. In this frame, the use of wholefield optical techniques has been proven successful in the validation of deformation, strain, or vibration modes. The strength of full-field optical techniques is that the entire displacement field can be acquired. The objective of this article is to integrate full-field optical measurement methodologies with state-of-the-art computational simulation techniques for nonlinear transient dynamic events. In this frame, composite car bonnet frame structures of dimensions about 1.8 m 30.8 m are considered. They have been tested in low-velocity mass-drop impact loading with impact energies ranging from 20 to 200 J. In parallel, simulation models of the car bonnet frame have been developed using layered shell elements. The Zernike shape descriptor approach was used to decompose numerical and experimental data into moments for comparison purposes. A very good agreement between numerical and experimental results was observed. Therefore, integration of numerical analysis with full-field optical measurements along with sophisticated comparison techniques can increase design reliability

    Fast generic polar harmonic transforms

    Get PDF
    International audienceGeneric polar harmonic transforms have recently been proposed to extract rotation-invariant features from images and their usefulness has been demonstrated in a number of pattern recognition problems. However, direct computation of these transforms from their definition is inefficient and is usually slower than some efficient computation strategies that have been proposed for other methods. This paper presents a number of novel computation strategies to compute these transforms rapidly. The proposed methods are based on the inherent recurrence relations among complex exponential and trigonometric functions used in the definition of the radial and angular kernels of these transforms. The employment of these relations leads to recursive and addition chain-based strategies for fast computation of harmonic function-based kernels. Experimental results show that the proposed method is about 10× faster than direct computation and 5× faster than fast computation of Zernike moments using the q-recursive strategy. Thus, among all existing rotation-invariant feature extraction methods, polar harmonic transforms are the fastest

    Automatic segmentation of wall structures from cardiac images

    Get PDF
    One important topic in medical image analysis is segmenting wall structures from different cardiac medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). This task is typically done by radiologists either manually or semi-automatically, which is a very time-consuming process. To reduce the laborious human efforts, automatic methods have become popular in this research. In this thesis, features insensitive to data variations are explored to segment the ventricles from CT images and extract the left atrium from MR images. As applications, the segmentation results are used to facilitate cardiac disease analysis. Specifically, 1. An automatic method is proposed to extract the ventricles from CT images by integrating surface decomposition with contour evolution techniques. In particular, the ventricles are first identified on a surface extracted from patient-specific image data. Then, the contour evolution is employed to refine the identified ventricles. The proposed method is robust to variations of ventricle shapes, volume coverages, and image quality. 2. A variational region-growing method is proposed to segment the left atrium from MR images. Because of the localized property of this formulation, the proposed method is insensitive to data variabilities that are hard to handle by globalized methods. 3. In applications, a geometrical computational framework is proposed to estimate the myocardial mass at risk caused by stenoses. In addition, the segmentation of the left atrium is used to identify scars for MR images of post-ablation.PhDCommittee Chair: Yezzi, Anthony; Committee Co-Chair: Tannenbaum, Allen; Committee Member: Egerstedt, Magnus ; Committee Member: Fedele, Francesco ; Committee Member: Stillman, Arthur; Committee Member: Vela,Patrici

    Spectrum Analysis of Speech Recognition via Discrete Tchebichef Transform

    Get PDF
    Speech recognition is still a growing field. It carries strong potential in the near future as computing power grows. Spectrum analysis is an elementary operation in speech recognition. Fast Fourier Transform (FFT) is the traditional technique to analyze frequency spectrum of the signal in speech recognition. Speech recognition operation requires heavy computation due to large samples per window. In addition, FFT consists of complex field computing. This paper proposes an approach based on discrete orthonormal Tchebichef polynomials to analyze a vowel and a consonant in spectral frequency for speech recognition. The Discrete Tchebichef Transform (DTT) is used instead of popular FFT. The preliminary experimental results show that DTT has the potential to be a simpler and faster transformation for speech recognition

    Smooth functions and their use in optical modeling and design

    Get PDF
    Analytical description of unknown smooth optical functions such as optical surface and wavefront phases will have profound importance in optical modeling and design. Polynomial models have been extensively used to describe smooth function. Various forms of polynomials for describing the smooth functions may be considered both in optical modeling and design. In optics, the Zernike polynomials are potential candidates to describe optical surface and wavefront phases. However, they are restrained to specific geometry and suffer from numerical instability, especially for describing complex functions. More recently, spline model functions were also investigated for describing the optical surface shape and wavefront phase

    Development of advanced control strategies for Adaptive Optics systems

    Get PDF
    Atmospheric turbulence is a fast disturbance that requires high control frequency. At the same time, celestial objects are faint sources of light and thus WFSs often work in a low photon count regime. These two conditions require a trade-off between high closed-loop control frequency to improve the disturbance rejection performance, and large WFS exposure time to gather enough photons for the integrated signal to increase the Signal-to-Noise ratio (SNR), making the control a delicate yet fundamental aspect for AO systems. The AO plant and atmospheric turbulence were formalized as state-space linear time-invariant systems. The full AO system model is the ground upon which a model-based control can be designed. A Shack-Hartmann wavefront sensor was used to measure the horizontal atmospheric turbulence. The experimental measurements yielded to the Cn2 atmospheric structure parameter, which is key to describe the turbulence statistics, and the Zernike terms time-series. Experimental validation shows that the centroid extraction algorithm implemented on the Jetson GPU outperforms (i.e. is faster) than the CPU implementation on the same hardware. In fact, due to the construction of the Shack-Hartmann wavefront sensor, the intensity image captured from its camera is partitioned into several sub-images, each related to a point of the incoming wavefront. Such sub-images are independent each-other and can be computed concurrently. The AO model is exploited to automatically design an advanced linear-quadratic Gaussian controller with integral action. Experimental evidence shows that the system augmentation approach outperforms the simple integrator and the integrator filtered with the Kalman predictor, and that it requires less parameters to tune
    • …
    corecore