1,831 research outputs found

    Panoramic Human Structure Maintenance based on Invariant Features of Video Frames

    Get PDF
    [[abstract]]Panoramic photography is becoming a very popular and commonly available feature in the mobile handheld devices nowadays. In traditional panoramic photography, the human structure often becomes messy if the human changes position in the scene or during the combination step of the human structure and natural background. In this paper, we present an effective method in panorama creation to maintain the main structure of human in the panorama. In the proposed method, we use an automatic method of feature matching, and the energy map of seam carving is used to avoid the overlapping of human with the natural background. The contributions of this proposal include automated panoramic creation method and it solves the human ghost generation problem in panorama by maintaining the structure of human by energy map. Experimental results prove that the proposed system can be effectively used to compose panoramic photographs and maintain human structure in panorama.[[incitationindex]]SCI[[booktype]]電子

    Efficient Image Stitching through Mobile Offloading

    Get PDF
    AbstractImage stitching is the task of combining images with overlapping parts to one big image. It needs a sequence of complex computation steps, especially the execution on a mobile device can take long and consume a lot of energy. Mobile offloading may alleviate those problems as it aims at improving performance and saving energy when executing complex applications on mobile devices. In this paper we investigate to which extent mobile offloading may improve the performance and energy efficiency of image stitching on mobile devices. We demonstrate our approach by stitching two or four images, but the process can be easily extended to an arbitrary number of images.We study three methods to offload parts of the computation to a resourceful server and evaluate them using several metrics. For the first offloading strategy all contributing images are sent, processed and the combined image is returned. For the second strategy images are offloaded, but not all stitching steps are executed on the remote server, and a smaller XML file is returned to the mobile client. The XML file contains a homography information which is needed by the mobile device to perform the last stitching step, the combination of the images. For the third strategy the images are transformed into grey scale before being transmitted to the server and an XML file is returned. The considered metrics are the execution time, the size of data to be transmitted and the memory usage. We find that the first strategy achieves the lowest total execution time but it requires more data to be transmitted than both the other strategies

    Panoramic Image Communication for Mobile Application using Content-Aware Image Resizing Method

    Get PDF
    This paper presents an image resizing application for mobile communication to evaluate content-aware image resizing method for panoramic image. In many applications, we can take account into aspect ratio changing, removal or pan and zoom in the image. However, the implemented application in this work is more focus on image downsizing due to mobile application that is limited for image capacity. The generated panoramic image will be distorted if simply scaling by factors and the image will lose information or generate artifacts if crop the area directly. It is meaningful to discuss how to keep the main object in the image and resize the image by cutting off the unnecessary part. The implemented approach has been successfully developed and it will be valuable to compare image resizing on mobile terminal

    Panoramic Image Communication for Mobile Application using Content-Aware Image Resizing Method

    Get PDF
    This paper presents an image resizing application for mobile communication to evaluate content-aware image resizing method for panoramic image. In many applications, we can take account into aspect ratio changing, removal or pan and zoom in the image. However, the implemented application in this work is more focus on image downsizing due to mobile application that is limited for image capacity. The generated panoramic image will be distorted if simply scaling by factors and the image will lose information or generate artifacts if crop the area directly. It is meaningful to discuss how to keep the main object in the image and resize the image by cutting off the unnecessary part. The implemented approach has been successfully developed and it will be valuable to compare image resizing on mobile terminal

    Remote Visual Observation of Real Places Through Virtual Reality Headsets

    Get PDF
    Virtual Reality has always represented a fascinating yet powerful opportunity that has attracted studies and technology developments, especially since the latest release on the market of powerful high-resolution and wide field-of-view VR headsets. While the great potential of such VR systems is common and accepted knowledge, issues remain related to how to design systems and setups capable of fully exploiting the latest hardware advances. The aim of the proposed research is to study and understand how to increase the perceived level of realism and sense of presence when remotely observing real places through VR headset displays. Hence, to produce a set of guidelines that give directions to system designers about how to optimize the display-camera setup to enhance performance, focusing on remote visual observation of real places. The outcome of this investigation represents unique knowledge that is believed to be very beneficial for better VR headset designs towards improved remote observation systems. To achieve the proposed goal, this thesis presents a thorough investigation of existing literature and previous researches, which is carried out systematically to identify the most important factors ruling realism, depth perception, comfort, and sense of presence in VR headset observation. Once identified, these factors are further discussed and assessed through a series of experiments and usability studies, based on a predefined set of research questions. More specifically, the role of familiarity with the observed place, the role of the environment characteristics shown to the viewer, and the role of the display used for the remote observation of the virtual environment are further investigated. To gain more insights, two usability studies are proposed with the aim of defining guidelines and best practices. The main outcomes from the two studies demonstrate that test users can experience an enhanced realistic observation when natural features, higher resolution displays, natural illumination, and high image contrast are used in Mobile VR. In terms of comfort, simple scene layouts and relaxing environments are considered ideal to reduce visual fatigue and eye strain. Furthermore, sense of presence increases when observed environments induce strong emotions, and depth perception improves in VR when several monocular cues such as lights and shadows are combined with binocular depth cues. Based on these results, this investigation then presents a focused evaluation on the outcomes and introduces an innovative eye-adapted High Dynamic Range (HDR) approach, which the author believes to be of great improvement in the context of remote observation when combined with eye-tracked VR headsets. Within this purpose, a third user study is proposed to compare static HDR and eye-adapted HDR observation in VR, to assess that the latter can improve realism, depth perception, sense of presence, and in certain cases even comfort. Results from this last study confirmed the author expectations, proving that eye-adapted HDR and eye tracking should be used to achieve best visual performances for remote observation in modern VR systems
    corecore