382 research outputs found

    A Defense Framework Against Denial-of-Service in Computer Networks

    Get PDF
    Denial-of-Service (DoS) is a computer security problem that poses a serious challenge totrustworthiness of services deployed over computer networks. The aim of DoS attacks isto make services unavailable to legitimate users, and current network architectures alloweasy-to-launch, hard-to-stop DoS attacks. Particularly challenging are the service-level DoSattacks, whereby the victim service is flooded with legitimate-like requests, and the jammingattack, in which wireless communication is blocked by malicious radio interference. Theseattacks are overwhelming even for massively-resourced services, and effective and efficientdefenses are highly needed. This work contributes a novel defense framework, which I call dodging, against service-level DoS and wireless jamming. Dodging has two components: (1) the careful assignment ofservers to clients to achieve accurate and quick identification of service-level DoS attackersand (2) the continuous and unpredictable-to-attackers reconfiguration of the client-serverassignment and the radio-channel mapping to withstand service-level and jamming DoSattacks. Dodging creates hard-to-evade baits, or traps, and dilutes the attack "fire power".The traps identify the attackers when they violate the mapping function and even when theyattack while correctly following the mapping function. Moreover, dodging keeps attackers"in the dark", trying to follow the unpredictably changing mapping. They may hit a fewtimes but lose "precious" time before they are identified and stopped. Three dodging-based DoS defense algorithms are developed in this work. They are moreresource-efficient than state-of-the-art DoS detection and mitigation techniques. Honeybees combines channel hopping and error-correcting codes to achieve bandwidth-efficientand energy-efficient mitigation of jamming in multi-radio networks. In roaming honeypots, dodging enables the camouflaging of honeypots, or trap machines, as real servers,making it hard for attackers to locate and avoid the traps. Furthermore, shuffling requestsover servers opens up windows of opportunity, during which legitimate requests are serviced.Live baiting, efficiently identifies service-level DoS attackers by employing results fromthe group-testing theory, discovering defective members in a population using the minimumnumber of tests. The cost and benefit of the dodging algorithms are analyzed theoretically,in simulation, and using prototype experiments

    A Mixed-Integer Programming Approach for Jammer Placement Problems for Flow-Jamming Attacks on Wireless Communication Networks

    Get PDF
    In this dissertation, we study an important problem of security in wireless networks. We study different attacks and defense strategies in general and more specifically jamming attacks. We begin the dissertation by providing a tutorial introducing the operations research community to the various types of attacks and defense strategies in wireless networks. In this tutorial, we give examples of mathematical programming models to model jamming attacks and defense against jamming attacks in wireless networks. Later we provide a comprehensive taxonomic classification of the various types of jamming attacks and defense against jamming attacks. The classification scheme will provide a one stop location for future researchers on various jamming attack and defense strategies studied in literature. This classification scheme also highlights the areas of research in jamming attack and defense against jamming attacks which have received less attention and could be a good area of focus for future research. In the next chapter, we provide a bi-level mathematical programming model to study jamming attack and defense strategy. We solve this using a game-theoretic approach and also study the impact of power level, location of jamming device, and the number of transmission channels available to transmit data on the attack and defense against jamming attacks. We show that by increasing the number of jamming devices the throughput of the network drops by at least 7%. Finally we study a special type of jamming attack, flow-jamming attack. We provide a mathematical programming model to solve the location of jamming devices to increase the impact of flow-jamming attacks on wireless networks. We provide a Benders decomposition algorithm along with some acceleration techniques to solve large problem instances in reasonable amount of time. We draw some insights about the impact of power, location and size of the network on the impact of flow-jamming attacks in wireless networks

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    A Mixed-Integer Programming Approach for Jammer Placement Problems for Flow-Jamming Attacks on Wireless Communication Networks

    Get PDF
    In this dissertation, we study an important problem of security in wireless networks. We study different attacks and defense strategies in general and more specifically jamming attacks. We begin the dissertation by providing a tutorial introducing the operations research community to the various types of attacks and defense strategies in wireless networks. In this tutorial, we give examples of mathematical programming models to model jamming attacks and defense against jamming attacks in wireless networks. Later we provide a comprehensive taxonomic classification of the various types of jamming attacks and defense against jamming attacks. The classification scheme will provide a one stop location for future researchers on various jamming attack and defense strategies studied in literature. This classification scheme also highlights the areas of research in jamming attack and defense against jamming attacks which have received less attention and could be a good area of focus for future research. In the next chapter, we provide a bi-level mathematical programming model to study jamming attack and defense strategy. We solve this using a game-theoretic approach and also study the impact of power level, location of jamming device, and the number of transmission channels available to transmit data on the attack and defense against jamming attacks. We show that by increasing the number of jamming devices the throughput of the network drops by at least 7%. Finally we study a special type of jamming attack, flow-jamming attack. We provide a mathematical programming model to solve the location of jamming devices to increase the impact of flow-jamming attacks on wireless networks. We provide a Benders decomposition algorithm along with some acceleration techniques to solve large problem instances in reasonable amount of time. We draw some insights about the impact of power, location and size of the network on the impact of flow-jamming attacks in wireless networks

    Cognitive Security Framework For Heterogeneous Sensor Network Using Swarm Intelligence

    Get PDF
    Rapid development of sensor technology has led to applications ranging from academic to military in a short time span. These tiny sensors are deployed in environments where security for data or hardware cannot be guaranteed. Due to resource constraints, traditional security schemes cannot be directly applied. Unfortunately, due to minimal or no communication security schemes, the data, link and the sensor node can be easily tampered by intruder attacks. This dissertation presents a security framework applied to a sensor network that can be managed by a cohesive sensor manager. A simple framework that can support security based on situation assessment is best suited for chaotic and harsh environments. The objective of this research is designing an evolutionary algorithm with controllable parameters to solve existing and new security threats in a heterogeneous communication network. An in-depth analysis of the different threats and the security measures applied considering the resource constrained network is explored. Any framework works best, if the correlated or orthogonal performance parameters are carefully considered based on system goals and functions. Hence, a trade-off between the different performance parameters based on weights from partially ordered sets is applied to satisfy application specific requirements and security measures. The proposed novel framework controls heterogeneous sensor network requirements,and balance the resources optimally and efficiently while communicating securely using a multi-objection function. In addition, the framework can measure the affect of single or combined denial of service attacks and also predict new attacks under both cooperative and non-cooperative sensor nodes. The cognitive intuition of the framework is evaluated under different simulated real time scenarios such as Health-care monitoring, Emergency Responder, VANET, Biometric security access system, and Battlefield monitoring. The proposed three-tiered Cognitive Security Framework is capable of performing situation assessment and performs the appropriate security measures to maintain reliability and security of the system. The first tier of the proposed framework, a crosslayer cognitive security protocol defends the communication link between nodes during denial-of-Service attacks by re-routing data through secure nodes. The cognitive nature of the protocol balances resources and security making optimal decisions to obtain reachable and reliable solutions. The versatility and robustness of the protocol is justified by the results obtained in simulating health-care and emergency responder applications under Sybil and Wormhole attacks. The protocol considers metrics from each layer of the network model to obtain an optimal and feasible resource efficient solution. In the second tier, the emergent behavior of the protocol is further extended to mine information from the nodes to defend the network against denial-of-service attack using Bayesian models. The jammer attack is considered the most vulnerable attack, and therefore simulated vehicular ad-hoc network is experimented with varied types of jammer. Classification of the jammer under various attack scenarios is formulated to predict the genuineness of the attacks on the sensor nodes using receiver operating characteristics. In addition to detecting the jammer attack, a simple technique of locating the jammer under cooperative nodes is implemented. This feature enables the network in isolating the jammer or the reputation of node is affected, thus removing the malicious node from participating in future routes. Finally, a intrusion detection system using `bait\u27 architecture is analyzed where resources is traded-off for the sake of security due to sensitivity of the application. The architecture strategically enables ant agents to detect and track the intruders threateningthe network. The proposed framework is evaluated based on accuracy and speed of intrusion detection before the network is compromised. This process of detecting the intrusion earlier helps learn future attacks, but also serves as a defense countermeasure. The simulated scenarios of this dissertation show that Cognitive Security Framework isbest suited for both homogeneous and heterogeneous sensor networks

    Security of the Internet of Things: Vulnerabilities, Attacks and Countermeasures

    Get PDF
    Wireless Sensor Networks (WSNs) constitute one of the most promising third-millennium technologies and have wide range of applications in our surrounding environment. The reason behind the vast adoption of WSNs in various applications is that they have tremendously appealing features, e.g., low production cost, low installation cost, unattended network operation, autonomous and longtime operation. WSNs have started to merge with the Internet of Things (IoT) through the introduction of Internet access capability in sensor nodes and sensing ability in Internet-connected devices. Thereby, the IoT is providing access to huge amount of data, collected by the WSNs, over the Internet. Hence, the security of IoT should start with foremost securing WSNs ahead of the other components. However, owing to the absence of a physical line-of-defense, i.e., there is no dedicated infrastructure such as gateways to watch and observe the flowing information in the network, security of WSNs along with IoT is of a big concern to the scientific community. More specifically, for the application areas in which CIA (confidentiality, integrity, availability) has prime importance, WSNs and emerging IoT technology might constitute an open avenue for the attackers. Besides, recent integration and collaboration of WSNs with IoT will open new challenges and problems in terms of security. Hence, this would be a nightmare for the individuals using these systems as well as the security administrators who are managing those networks. Therefore, a detailed review of security attacks towards WSNs and IoT, along with the techniques for prevention, detection, and mitigation of those attacks are provided in this paper. In this text, attacks are categorized and treated into mainly two parts, most or all types of attacks towards WSNs and IoT are investigated under that umbrella: “Passive Attacks” and “Active Attacks”. Understanding these attacks and their associated defense mechanisms will help paving a secure path towards the proliferation and public acceptance of IoT technology
    • …
    corecore