2,721 research outputs found

    Fast and backward stable computation of eigenvalues and eigenvectors of matrix polynomials

    Get PDF
    In the last decade matrix polynomials have been investigated with the primary focus on adequate linearizations and good scaling techniques for computing their eigenvalues and eigenvectors. In this article we propose a new method for computing a factored Schur form of the associated companion pencil. The algorithm has a quadratic cost in the degree of the polynomial and a cubic one in the size of the coefficient matrices. Also the eigenvectors can be computed at the same cost. The algorithm is a variant of Francis's implicitly shifted QR algorithm applied on the companion pencil. A preprocessing unitary equivalence is executed on the matrix polynomial to simultaneously bring the leading matrix coefficient and the constant matrix term to triangular form before forming the companion pencil. The resulting structure allows us to stably factor each matrix of the pencil as a product of k matrices of unitary-plus-rank-one form, admitting cheap and numerically reliable storage. The problem is then solved as a product core chasing eigenvalue problem. A backward error analysis is included, implying normwise backward stability after a proper scaling. Computing the eigenvectors via reordering the Schur form is discussed as well. Numerical experiments illustrate stability and efficiency of the proposed methods

    Matrix methods for Pad\'e approximation: numerical calculation of poles, zeros and residues

    Full text link
    A representation of the Pad\'e approximation of the ZZ-transform of a signal as a resolvent of a tridiagonal matrix JJ is given. Several formulas for the poles, zeros and residues of the Pad\'e approximation in terms of the matrix JJ are proposed. Their numerical stability is tested and compared. Methods for computing forward and backward errors are presented

    Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi-Chebyshev algorithm

    Get PDF
    An efficient way of solving 2D stability problems in fluid mechanics is to use, after discretization of the equations that cast the problem in the form of a generalized eigenvalue problem, the incomplete Arnoldi-Chebyshev method. This method preserves the banded structure sparsity of matrices of the algebraic eigenvalue problem and thus decreases memory use and CPU-time consumption. The errors that affect computed eigenvalues and eigenvectors are due to the truncation in the discretization and to finite precision in the computation of the discretized problem. In this paper we analyze those two errors and the interplay between them. We use as a test case the two-dimensional eigenvalue problem yielded by the computation of inertial modes in a spherical shell. This problem contains many difficulties that make it a very good test case. It turns out that that single modes (especially most-damped modes i.e. with high spatial frequency) can be very sensitive to round-off errors, even when apparently good spectral convergence is achieved. The influence of round-off errors is analyzed using the spectral portrait technique and by comparison of double precision and extended precision computations. Through the analysis we give practical recipes to control the truncation and round-off errors on eigenvalues and eigenvectors.Comment: 15 pages, 9 figure

    A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition

    Full text link
    The Koopman operator is a linear but infinite dimensional operator that governs the evolution of scalar observables defined on the state space of an autonomous dynamical system, and is a powerful tool for the analysis and decomposition of nonlinear dynamical systems. In this manuscript, we present a data driven method for approximating the leading eigenvalues, eigenfunctions, and modes of the Koopman operator. The method requires a data set of snapshot pairs and a dictionary of scalar observables, but does not require explicit governing equations or interaction with a "black box" integrator. We will show that this approach is, in effect, an extension of Dynamic Mode Decomposition (DMD), which has been used to approximate the Koopman eigenvalues and modes. Furthermore, if the data provided to the method are generated by a Markov process instead of a deterministic dynamical system, the algorithm approximates the eigenfunctions of the Kolmogorov backward equation, which could be considered as the "stochastic Koopman operator" [1]. Finally, four illustrative examples are presented: two that highlight the quantitative performance of the method when presented with either deterministic or stochastic data, and two that show potential applications of the Koopman eigenfunctions
    corecore