16 research outputs found

    Automated lay-up of composite blades

    Get PDF
    "Automated Lay-Up of Composite Blades" describes the Author’s contribution to a joint research project between Dowty Aerospace Propellers and the University of Durham into the automated lay-up of complex, three dimensional carbon fibre composite propfan blade preforms. The emphasis of the highly applied Project, now continuing at Brunei University, has been to develop an operational research demonstrator cell. The existing manual lay-up techniques employed by Dowty have been reviewed and a new met ho logy devised which can be far more easily automated. To implement the new met ho logy, a specialized lay-up station has been developed along with a practical prototype vacuum gripper technology capable of manipulating the range of large, complex, flexible and easily distorted plies required for propfan preform manufacture. Both the gripper technology and the Lay-Up Station have been successfully tested, the latter in an industrial environment to manufacture "real life” propfan blades

    Simulation of the thermoforming process of UD fiber-reinforced thermoplastic tape laminates

    Get PDF
    Einer der entscheidendsten Prozessschritte bei der Herstellung von kontinuierlich faserverstärkten Kunstoffen ist die Umformung von zweidimensionalen Halbzeugen in komplexe Geometrien. Hierbei spielt das nicht-isotherme Stempelumformverfahren von unidirektional (UD) faserverstärkten thermoplastischen Tape-Laminaten aufgrund geringer Zykluszeiten, Materialeffizienz und Recyclingfähigkeit insbesondere in der Automobilindustrie eine immer größer werdende Rolle. Durch die Umformsimulation kann die Herstellbarkeit einer bestimmten Geometrie virtuell abgesichert und hierfür notwendige Prozessparameter bestimmt werden, wodurch eine zeit- und kostenintensive "Trial and Error" Prozessauslegung vermieden werden kann. In dieser Arbeit werden initial anhand einer experimentellen Umformstudie und Materialcharakterisierungen die Anforderungen an die Umformsimulation von teilkristallinen thermoplastischen UD-Tapes abgeleitet. Hierbei zeigt sich, dass ein thermomechanischer Ansatz, unter Berücksichtigung der raten- und temperaturabhängigen Materialeigenschaften, als auch der Kristallisationskinetik, erstrebenswert ist. Darauf aufbauend wird mit der kommerziellen Finite Elemente (FE) Software Abaqus, in Kombination mit mehreren sogenannten User-Subroutinen, ein entsprechender Simulationsansatz entwickelt. Zunächst werden hypo- und hyperelastischen Materialmodellierungsansätze untersucht, sowie ratenabhängige intra-ply Materialmodellierungsansätze vorgestellt. Dabei liegt ein Schwerpunkt auf dem ratenabhängigen Biegeverhalten, da diese Materialeigenschaft üblicherweise nicht berücksichtigt wird, weshalb hierfür hypoviskoelastische Modellierungsansätze auf Basis eines nichtlinearen Voigt-Kelvin- sowie eines nichtlinearen generalisierten Maxwell-Ansatzes vorgestellt werden. Unter Anwendung dieser Ansätze zeigt sich im Vergleich mit experimentellen Umformergebnissen eine gute Übereinstimmung. Darüber hinaus wird ein Einfluss der ratenabhängigen Biegeeigenschaften auf die Vorhersage der Faltenbildung beobachtet. Im nächsten Schritt wird der Ansatz um eine "Discrete Kirchhoff Triangle" (DKT) Schalenformulierung erweitert, welche in Abaqus als User-Element implementiert ist. Dies ermöglicht im Gegensatz zu dem im vorherigen Kapitel vorgestellten Ansatz die hyperviskoelastische Modellierung des Membran- und des Biegeverhaltens. Darauf aufbauend werden ein nichtlinearer Voigt-Kelvin-, sowie ein nichtlinearer generalisierter Maxwell-Ansatz, welcher auf einer multiplikativen Zerlegung des Deformationsgradienten basiert, vorgestellt. In der Umformsimulation zeigt sich eine gute Übereinstimmung mit experimentellen Umformergebnissen. Darüber hinaus wird beobachtet, dass ein nichtlinearer Voigt-Kelvin-Ansatz für die Modellierung des Membranverhaltens ausreichend ist. Neben intra-ply werden auch inter-ply Modellierungsansätze untersucht. Hierfür wird ein erweiterter Ansatz vorgestellt, der neben den üblicherweise berücksichtigten Zustandsgrößen Abgleitgeschwindigkeit und Transversaldruck auch die Relativorientierung zwischen den abgleitenden Schichten berücksichtigt. Bei der Anwendung dieses Ansatzes in der Umformsimulation werden jedoch nur geringe Unterschiede gegenüber einem herkömmlichen Ansatz beobachtet. Der präsentierte Ansatz für die Umformsimulation von thermoplastischen UD-Tapes wird final zu einem gekoppelten thermomechanischen Ansatz erweitert. Die entsprechende thermische Modellierung berücksichtigt Strahlung, Konvektion und Wärmeleitung, sowie die Kristallisationskinetik, wobei das mechanische Verhalten über die Temperatur und die relative Kristallinität an das thermische Verhalten gekoppelt ist. Hiermit wird der Übergang vom schmelzflüssigen zum Festkörperzustand vorhergesagt und in der Modellierung des Umformverhaltens berücksichtigt. Hierdurch wird eine verbesserte Übereinstimmung mit den experimentellen Umformergebnissen erzielt und auch die lokale Temperaturentwicklung akkurat vorhergesagt. Darüber hinaus zeigt sich, dass bei einer ungünstigen Wahl der Prozessparameter eine starke Kristallisation schon während der Umformung auftritt. Da außerdem nur der thermomechanische Ansatz den Einfluss aller relevanten Prozessparameter berücksichtigen kann, wird geschlussfolgert, dass die Berücksichtigung thermischer Effekte sowie der Kristallisationskinetik vorteilhaft für die virtuelle Prozessauslegung nicht-isothermer Stempelumformverfahren mit teilkristallinen Thermoplasten ist

    Predictive modelling and experimental measurement of composite forming behaviour

    Get PDF
    Optimised design of textile composite structures based on computer simulation techniques requires an understanding of the deformation behaviour during forming of 3-dimensional double-curvature components. Purely predictive material models are highly desirable to facilitate an optimised design scheme and to significantly reduce time and cost at the design stage, such as experimental characterisation. In-plane shear and out-of-plane bending are usually thought to be the key forming mechanisms. Therefore, this thesis is concerned with studies of the shear and bending behaviour by experimental characterisation and theoretical modelling. Micromechanical interaction between fibre and matrix offers fundamental understanding of deformation mechanisms at the micro-scale level, leading to development of composite viscosity models, as input to shear and bending models. The composite viscosity models were developed based on rheological behaviour during movement of fibres, and validation was performed using experimental results collected from the literature. A novel characterisation method for measuring the bending behaviour, by means of a large-displacement buckling test, was attempted due to some significant advantages over other methods. Development of a bending model was also undertaken for unidirectional composites but experimental validation suggests further study may be required for woven composites. The shear behaviour was characterised using a picture frame test for viscous polymer composites. To obtain reliable experimental data, some efforts of improving the characterisation method were made. The experimental results were then used to validate a shear model, suggesting that further improvement is required, in terms of weave patterns, rate and temperature dependence

    Predictive modelling and experimental measurement of composite forming behaviour

    Get PDF
    Optimised design of textile composite structures based on computer simulation techniques requires an understanding of the deformation behaviour during forming of 3-dimensional double-curvature components. Purely predictive material models are highly desirable to facilitate an optimised design scheme and to significantly reduce time and cost at the design stage, such as experimental characterisation. In-plane shear and out-of-plane bending are usually thought to be the key forming mechanisms. Therefore, this thesis is concerned with studies of the shear and bending behaviour by experimental characterisation and theoretical modelling. Micromechanical interaction between fibre and matrix offers fundamental understanding of deformation mechanisms at the micro-scale level, leading to development of composite viscosity models, as input to shear and bending models. The composite viscosity models were developed based on rheological behaviour during movement of fibres, and validation was performed using experimental results collected from the literature. A novel characterisation method for measuring the bending behaviour, by means of a large-displacement buckling test, was attempted due to some significant advantages over other methods. Development of a bending model was also undertaken for unidirectional composites but experimental validation suggests further study may be required for woven composites. The shear behaviour was characterised using a picture frame test for viscous polymer composites. To obtain reliable experimental data, some efforts of improving the characterisation method were made. The experimental results were then used to validate a shear model, suggesting that further improvement is required, in terms of weave patterns, rate and temperature dependence

    Predictive modelling and experimental measurement of composite forming behaviour

    Get PDF
    Optimised design of textile composite structures based on computer simulation techniques requires an understanding of the deformation behaviour during forming of 3-dimensional double-curvature components. Purely predictive material models are highly desirable to facilitate an optimised design scheme and to significantly reduce time and cost at the design stage, such as experimental characterisation. In-plane shear and out-of-plane bending are usually thought to be the key forming mechanisms. Therefore, this thesis is concerned with studies of the shear and bending behaviour by experimental characterisation and theoretical modelling. Micromechanical interaction between fibre and matrix offers fundamental understanding of deformation mechanisms at the micro-scale level, leading to development of composite viscosity models, as input to shear and bending models. The composite viscosity models were developed based on rheological behaviour during movement of fibres, and validation was performed using experimental results collected from the literature. A novel characterisation method for measuring the bending behaviour, by means of a large-displacement buckling test, was attempted due to some significant advantages over other methods. Development of a bending model was also undertaken for unidirectional composites but experimental validation suggests further study may be required for woven composites. The shear behaviour was characterised using a picture frame test for viscous polymer composites. To obtain reliable experimental data, some efforts of improving the characterisation method were made. The experimental results were then used to validate a shear model, suggesting that further improvement is required, in terms of weave patterns, rate and temperature dependence

    Τριδιάστατα Μικρομηχανικά Μοντέλα Υφασμάτων

    Get PDF
    370 σ.Στόχο της διδακτορικής διατριβής αποτελεί η ανάπτυξη μιας ολοκληρωμένης μεθόδου μηχανικής ανάλυσης των κλωστοϋφαντουργικών (κ/υ) προϊόντων βασισμένη στην μικροδομή τους. Η ανάγκη για ακριβή πρόβλεψη της μηχανικής απόδοσης των κ/υ δομών προέκυψε από την εισαγωγή τους σε τεχνικές εφαρμογές, κυρίως υπό την μορφή σύνθετων υλικών, και την ενσωμάτωσή τους στην αεροπορική βιομηχανία και ναυπηγική (προπέλες και πλαίσια σκαφών από σύνθετα υλικά), στην πολιτική μηχανική (ελαφριά πλαίσια σύνθετων υλικών, αποστράγγιση εδάφους), στον αθλητικό εξοπλισμό (προστατευτική ένδυση και ένδυση υψηλών επιδόσεων), στον τομέα των επίγειων μεταφορών (αερόσακοι, ζώνες ασφαλείας, ελαστικά οχημάτων) κ.α. Παρά τις μακροχρόνιες προσπάθειες της ερευνητικής κοινότητας για την ανάπτυξη μιας αξιόπιστης μεθοδολογίας για την πρόβλεψη της μηχανικής συμπεριφοράς των κ/υ δομών, η σχεδιαστική τους διαδικασία βρίσκεται ακόμα σε εξέλιξη. Η επίδραση των δομικών στοιχείων (των ινών) των υφασμάτων στην μηχανική ανάλυση αυτών αποτέλεσε βασική αρχή για την προτεινόμενη προσέγγιση μοντελοποίησης, σε αντιδιαστολή με τα υπάρχοντα διδιάστατα μηχανικά μοντέλα των υφασμάτων τύπου ελάσματος ή μεμβράνης. Θεωρήθηκε επομένως η διακριτή δομή των υφασμάτων, γνωστή ως μικροδομή λόγω των μικρών διαστάσεων των δομικών στοιχείων. Αυτό ακριβώς εκφράζει ο τίτλος της διατριβής. Στο πρώτο κεφάλαιο της διατριβής παρουσιάζεται η βιβλιογραφική επισκόπηση των μεθόδων που έχουν αναπτυχθεί για την μηχανική ανάλυση των κ/υ δομών. Από την πρώτη αναλυτική προσέγγιση για την διδιάστατη γεωμετρική απεικόνιση της απλής ύφανσης μέχρι τα σύγχρονα τριδιάστατα υπολογιστικά μοντέλα σύνθετων υλικών σημειώθηκε πλήθος προσεγγίσεων όσον αφορά τον σχεδιασμό του προβλήματος, την μέθοδο μηχανικής ανάλυσης, το επίπεδο της μοντελοποίησης και τις θεωρούμενες παραδοχές. Καταγράφηκε, λοιπόν, η εξελικτική πορεία των σχετικών ερευνών, οι προοπτικές και οι περιορισμοί για την μηχανική ανάλυση των κ/υ δομών. Το υψηλό επίπεδο δομικής πολυπλοκότητας που προκύπτει από την ιεραρχία ίνα – νήμα – ύφασμα επιφέρει σημαντικές δυσκολίες στην μοντελοποίηση και την μηχανική ανάλυση των κ/υ προϊόντων. Ενδεικτική είναι η απόκλιση που παρουσιάζουν οι διαστάσεις τυπικού μεγέθους υφάσματος (10-1 έως 100 m) και των δομικών στοιχείων που το συνιστούν (διάμετρος ίνας, 10-5 m). Η πολυπλοκότητα που συναντάται στην μοντελοποίηση και μηχανική ανάλυση των κ/υ δομών λόγω της δομικής ιεραρχίας αντιμετωπίστηκε υιοθετώντας ανάλογη ιεραρχία στην διαδικασία μοντελοποίησης. Μ’ αυτόν τον τρόπο αναπτύχθηκαν τρία επίπεδα μοντελοποίησης: η μικρομηχανική μοντελοποίηση των νημάτων, η μεσομηχανική μοντελοποίηση της δομικής μονάδας του υφάσματος και η μακρομηχανική μοντελοποίηση ευρύτερου τμήματος του υφάσματος. Κατ΄ επέκταση η προτεινόμενη μεθοδολογία για την μηχανική ανάλυση των κ/υ δομών περιλαμβάνει τρία κυρίως στάδια, τα οποία αναπτύσσονται στα επόμενα κεφάλαια. Το δεύτερο κεφάλαιο εστιάζει στο στάδιο της μικρομηχανικής μοντελοποίησης. Μελετήθηκαν σε μικροκλίμακα (σε επίπεδο ίνας) νήματα τυπικής δομής τα οποία συνιστούν το δομικό στοιχείο για την παραγωγή των κ/υ προϊόντων. Για την ανάπτυξη του μηχανικού μοντέλου πολυινικού στριμμένου νήματος θεωρήθηκαν οι ελαστικές και διαστατικές ιδιότητες των ινών και η δομή του ιδανικού νήματος. Για την μοντελοποίηση και μηχανική ανάλυση εφαρμόστηκε η μέθοδος των πεπερασμένων στοιχείων (ΠΣ) με στοιχεία δοκών συζευγμένη με προηγμένους αλγορίθμους επίλυσης για την πρόβλεψη μεγάλων παραμορφώσεων. Η ευχρηστία της προτεινόμενης μεθόδου στην γεωμετρική απεικόνιση και την ανάπτυξη του πλέγματος την καθιστούν κατάλληλη για την αντιμετώπιση των δυσκολιών που απορρέουν από την υψηλή δομική πολυπλοκότητα των μοντέλων των νημάτων (π.χ. νήμα 100 ινών). Σκοπός του τρέχοντος σταδίου είναι ο υπολογισμός των φαινόμενων ιδιοτήτων του νήματος, κυρίως του αξονικού μέτρου ελαστικότητας και της δυσκαμψίας. Για τον υπολογισμό τους πραγματοποιείται η προσομοίωση των αντίστοιχων δοκιμών. Για την αξιολόγηση της προτεινόμενης μεθόδου παράχθηκε εργαστηριακά μια σειρά νημάτων από 2 μέχρι 1200 ίνες, τα οποία υποβλήθηκαν σε δοκιμές εφελκυσμού και κάμψης. Από την σύγκριση των πειραματικών και υπολογιστικών δεδομένων επιβεβαιώθηκε η αξιοπιστία της μοντελοποίησης. Επιπλέον ακολούθησε παραμετρική ανάλυση του μοντέλου του νήματος που αποτυπώνει την επίδραση των κύριων δομικών χαρακτηριστικών των νημάτων στο φαινόμενο μέτρο ελαστικότητας και την δυσκαμψία του νήματος. Στο τρίτο κεφάλαιο παρουσιάζεται το στάδιο της μεσομηχανικής μοντελοποίησης που εστιάζει στην μελέτη των μηχανικών ιδιοτήτων της δομικής μονάδας του υφάσματος. Στο τρέχον στάδιο μοντελοποίησης παραλήφθηκε η απεικόνιση των ινών που συνιστούν τα νήματα για την μείωση του υπολογιστικού κόστους και τα νήματα μοντελοποιήθηκαν ως ομογενείς δομές (οι φαινόμενες ιδιότητες τους υπολογίστηκαν στο πρώτο στάδιο). Επομένως η επιτυχής απόδοση των ιδιοτήτων στα μοντελοποιημένα νήματα αποτελεί βασικό παράγοντα για την αξιοπιστία των μεσομηχανικών μοντέλων. Επιπλέον η αλληλεπίδραση των νημάτων που συνιστούν την δομή του υφάσματος είναι καθοριστική για την δομική σταθερότητα του υφάσματος κατά την υποβολή του σε μηχανικά φορτία. Τρεις προσεγγίσεις, η μοντελοποίηση με ογκικά ΠΣ, ΠΣ κελύφους και ΠΣ δοκού, αναπτύχθηκαν για την μεσομηχανική ανάλυση της δομικής μονάδας του απλού υφαντού. Από την σύγκριση των προσεγγίσεων, η μοντελοποίηση με ΠΣ κελύφους αποδείχθηκε καταλληλότερη με πολλά σημεία υπεροχής, κυριότερο των οποίων είναι η επιτυχής απόδοση των φαινόμενων ιδιοτήτων στα ομογενοποιημένα νήματα. Σκοπός της μεσομηχανικής ανάλυσης είναι ο υπολογισμός της φαινόμενης συμπεριφοράς της δομικής μονάδας του υφάσματος σε εφελκυσμό, διάτμηση και κάμψη από την προσομοίωση των αντίστοιχων δοκιμών. Μελετήθηκε επίσης η γεωμετρία των βασικότερων δομών υφαντών και πλεκτών υφασμάτων και αναπτύχθηκαν τα αντίστοιχα μοντέλα. Ιδιαίτερα για τα μοντέλα των πλεκτών υφασμάτων από βαμβακερά νήματα αναπτύχθηκε μεθοδολογία σχεδιασμού που στηρίζεται στο ελάχιστο μήκος νήματος θηλιάς και επιβεβαιώθηκε από εργαστηριακά αποτελέσματα. Στο τέταρτο κεφάλαιο παρουσιάζεται η μακρομηχανική μοντελοποίηση των κ/υ δομών. Η μακρομηχανική ανάλυση εστιάζει στην μηχανική συμπεριφορά μεγάλου τμήματος του υφάσματος σε σύνθετες καταπονήσεις. Για την μείωση του υπολογιστικού κόστους η απεικόνιση της δομικής μονάδας του υφάσματος παραλείπεται και η διακριτή δομή του υφάσματος αντικαθίσταται από συνεχές μοντέλο. Προφανώς η απόδοση των φαινόμενων ιδιοτήτων του διακριτού μοντέλου στο ισοδύναμο συνεχές μοντέλο (μέθοδος ομογενοποίησης) είναι καθοριστική για την αξιοπιστία της μακρομηχανικής ανάλυσης. Αναπτύχθηκαν τρεις προσεγγίσεις για την ανάπτυξη συνεχούς μοντέλου ΠΣ που παρουσιάζει ισοδύναμη μηχανική συμπεριφορά με την διακριτή δομή του απλού υφαντού: α. Μοντέλο από δύο πλέγματα κελύφους, με συμπίπτοντες κόμβους, που παρουσιάζουν διαφορετικό είδος δυσκαμψίας (ελαστική – καμπτική). β. Μοντέλο από δύο πλέγματα κελύφους, με συμπίπτοντες κόμβους, από διαφορετικό υλικό. γ. Μοντέλο τριών στρωμάτων συμμετρικής διατομής (πλεγματοποίηση με ΠΣ κελύφους, ογκικά ΠΣ ή solid-shell ΠΣ). Η αξιοπιστία των μακρομηχανικών μοντέλων εκτιμήθηκε από πειραματικά αποτελέσματα που ελήφθησαν από βιβλιογραφικές πηγές. Συγκεκριμένα για την υπολογιστική πρόβλεψη της μακρομηχανικής συμπεριφοράς αναπτύχθηκε το μεσομηχανικό μοντέλο της δομικής μονάδας, υπολογίστηκαν οι φαινόμενες ιδιότητες, εφαρμόστηκαν οι μέθοδοι ομογενοποίησης και η προσομοίωση των μηχανικών καταπονήσεων στο συνεχές μακρομηχανικό μοντέλο. Αποτελεί επομένως επιβεβαίωση της ορθότητας των σταδίων μεσο- και μακρο-μηχανικής μοντελοποίησης. Το πέμπτο κεφάλαιο της διατριβής εστιάζει στην προσομοίωση του πεσίματος του υφάσματος υπό την επίδραση του βάρους του σε βάθρο στήριξης (drape test). Πρόκειται για ιδιαίτερα σύνθετη καταπόνηση δεδομένου ότι το ύφασμα κάμπτεται σε πολλά επίπεδα σχηματίζοντας πτυχώσεις. Η δυνατότητα των υφασμάτων να κάμπτονται σε πολλά επίπεδα επιτρέπει την διαμόρφωσή τους σε μήτρες και την παραγωγή σύνθετων κομματιών πολύπλοκων σχημάτων. Η δοκιμή drape αποτελεί μη-γραμμικό πρόβλημα που διέπεται από μεγάλες μετατοπίσεις και στροφές. Η μέθοδος ομογενοποίησης με συνεχή δομή τριών στρωμάτων αποδείχτηκε κατάλληλη για την προσομοίωση της δοκιμής drape. Για την μοντελοποίηση χρησιμοποιήθηκαν τα 8-κομβικά solid-shell ΠΣ με 3 βαθμούς ελευθερίας ανά κόμβο. Η αξιοπιστία της προσομοίωσης αξιολογήθηκε πειραματικά. Στο έκτο κεφάλαιο επιχειρείται η εφαρμογή της προτεινόμενης μεθόδου μοντελοποίησης για την μελέτη της συμπεριφοράς τριδιάστατης κ/υ δομής σε δοκιμή συμπίεσης. Πρόκειται για στημονοπλεκτά υφάσματα με σημαντικό πάχος που παρουσιάζουν υψηλή αντίσταση σε συμπίεση και χρησιμοποιούνται σε οικοδομικές κατασκευές ως δομές ενίσχυσης σκυροδέματος για την παραγωγή πλαισίων τοίχου, επένδυση οροφής κ.α. Η αντίσταση του υφάσματος σε συμπίεση αποτελεί πλεονέκτημα για την παραγωγή του σύνθετου υλικού (εύκολη ενσωμάτωση του σκυροδέματος στην κ/υ δομή) και την λειτουργικότητά του. Παράχθηκαν τα μεσομηχανικά μοντέλα των στρωμάτων της δομής από τα οποία υπολογίστηκαν οι φαινόμενες ιδιότητες. Στη συνέχεια το μακρομηχανικό μοντέλο υποβλήθηκε σε δοκιμή συμπίεσης προσομοιώνοντας την πειραματική δοκιμή. Τέλος στο έβδομο κεφάλαιο παρουσιάζονται τα συμπεράσματα της διατριβής, διερευνάται η επάρκεια της προτεινόμενης μεθόδου μηχανικής ανάλυσης των κ/υ δομών και οι δυνατότητες εξέλιξής της καθώς και οι αδυναμίες της μεθόδου και οι προοπτικές για περαιτέρω έρευνα.The current thesis aims at the development of an integrated method for the mechanical analysis of the textile structures based on their microstructure. The request for reliable textile mechanical design was intensified by their introduction in technical applications, mainly in composite materials, and their expansion in aerospace and shipping industry (composite propellers, composite aircraft & hovercraft panels), in civil constructions (composite framework, drainage), in sports equipment (protective equipment, breathable waterproofs), in land transportation (seat belts, tyre cord, air filters, airbags) etc. Despite the long-lasting attempts of the research community to develop a thorough technique for the prediction of the fabric performance, the used design procedure is still in evolution. The effect of the structural elements of the fabrics, the fibres, in their mechanical analysis constituted the basic principle for the modelling approach, in contradiction to the existing mechanical two-dimensional models of the fabrics considered as simple sheets or membranes. Thus the discrete structure of the fabric, known as microstructure due to the small dimensions of the structural elements, was considered. This is exactly reflected in the title of the thesis. In the first chapter of the thesis, the literature review of the developed methods for the mechanical analysis of the textile structures is conducted. From the first analytical approach for the 2D geometrical representation of the plain woven up to the advanced 3D computational models of composite materials, numerous approaches were recorded regarding the problem designing, the mechanical analysis method, the modelling scale and the considered assumptions. The current chapter presents the evolutionary process of the research and exposes the technological attempts, perspectives and limitations resulted from the mechanical analysis of the textile structures. The production hierarchy of the textile structures (fibre – yarn – fabric) is correlated with the high level of complexity presented in the modelling procedure and the mechanical analysis of them. The difficulties are increased due to the high divergence of the dimensions corresponding to the fabric sheet (10-1 to 100 m) and the structural elements (fibre diameter, 10-5 m). Thus the realistic representation of the fabric structure, including the level of the fibres representation, for the macromechanical modelling is computationally impractical. The structural singularity of the fabrics incurs their particular flexibility. Thereby the macromechanical behaviour of fabrics is characterized by the large displacements of the constituting fibres even under low loading conditions. The modelling difficulties resulted from the structural hierarchy of the textiles were faced adopting a relative modelling hierarchy. Thus three basic modelling scales were developed: the micromechanical modelling of yarns, the mesomechanical modelling of the fabric unit cell and the macromechanical modelling of the fabric sheet, that are described in the next chapters. The second chapter focuses on the stage of the micromechanical modelling. The typical yarn structure was studied in the micro-scale (fibre level) that constitutes the structural element for the production of textile products. The physical and the geometrical properties of the filaments and the ideal yarn geometrical structure are considered for the mechanical modelling of the multifilament twisted yarn. The FEM applying the beam theory enhanced with advanced solution algorithms supporting large deformation effects was implemented for the mechanical analysis. The proposed method offers a fast and flexible design in terms of modelling, meshing and analysis. Thus the difficulties resulted from the high structural complexity of the yarn models (e.g. yarn made of 100 filaments) are faced. The current stage of modelling aims at the calculation of the apparent yarn properties, mainly the elastic modulus and the bending rigidity. The respective deformations were simulated. For the evaluation of the proposed method, a set of 2- to 1200-filament twisted yarns were produced in the laboratory and tested in tensile and bending deformations. The comparison of the computational and the experimental data assured the reliability of the modelling approach. The effect of the major structural parameters as the filament radius and the yarn twist in the elastic properties and the bending rigidity was also examined. The third chapter presents the mesomechanical modelling stage focusing on the apparent mechanical properties of the fabric unit cell. In the current stage of modelling the representation of the filaments constituting the yarns is omitted for the reduction of the computational cost and the yarns are represented as homogenous structures (their apparent properties were calculated in the above stage). Thus the attribution of the yarn properties constitutes the basic factor for the modelling reliability due to the homogenization of the yarns. Moreover the yarns interactions in the fabric structure are determinant for the structural stability of the fabrics subjected to deformations. Three approaches, the solid, the shell and the beam modelling, are investigated for the mesomechanical analysis of the plain woven structure. The beam modelling was proved the appropriate approach for the reliable attribution of the modelled yarns. Aim of the mesomechanical modelling stage is the calculation of the performance of the unit cell in the tensile, shear and bending deformation. The models of the basic woven and knitted structures were also presented. Especially the modelling approach of the knitted structures produced by cotton yarns was based on the proposed principle of the minimum loop length and it was confirmed by the experimental data. In the fourth chapter, the macromechanical modelling stage of textile structures is presented. The macromechanical analysis refers to the mechanical performance of the fabric sheet in complex deformations. The reduction of the computational cost demands the omitting of the representation of the structural unit cells. Thus the discrete structure of the fabric is replaced by a continuum model. It is obvious that the evaluation of the apparent properties of the discrete model and the generation of an equivalent continuum model (homogenization) is essential for the reliability of the macromechanical analysis. Three methods were implemented for the generation of a continuum model of FE presenting equivalent performance with the discrete woven structure: a. Two shell meshes of coincident nodes presenting different stiffness b. Two shell meshes of coincident nodes of different material properties c. 3-layer continuum structure (meshed using shells or solid-shell elements) The reliability of the macromechanical models was evaluated using experimental data received by the literature. In particular, the computational prediction of the macromechanical performance was based on the generation of the mesomechanical model of the unit cell, the calculation of the apparent properties, the implementation of the homogenization approaches and the simulation of the mechanical tests using the continuum macromechanical model. The fifth chapter of the thesis focuses on the simulation of the fabric drape test. The fabric drape corresponds to an extremely complex deformation given that the fabric is bent in several planes forming the folds. The drapeability of the fabric reinforcement offers the advantage of bending around double-curvature mould producing complex shaped composite parts. The fabric drape is a nonlinear problem that undergoes large displacements and rotations. The 3-layer homogenization method was proved adequate for the drape simulation. The 8-node solid-shell finite elements with 3 translational degrees of freedom in each node were used for the analysis. The success of the analysis was evaluated experimentally. In the sixth chapter, the proposed textile modelling approach is implemented for the study of the compression performance of a spacer fabric. The warp-knitted spacer fabrics are successfully introduced in building constructions as thin sheet component reinforcement for wall panels, exterior siding, roofing tiles, flooring tiles, pressure pipes etc. Their structural advantages support an armature system of highly oriented yarns and the easily cement embodiment for the production of the composite. The compression resistance of the spacer fabric provides a major advantage for the performance and the composite manufacturing process. The mesomechanical models of the constitutive layers were generated and the apparent properties were calculated. Then the simulation of the compression test was performed using the macromechanical model. Finally the conclusions of the thesis are presented in the seventh chapter. The adequacy of the proposed approach of textile design, the limitations of the method and the perspectives for further work are discussed.Αργυρώ Ε. Καλλιβρετάκ

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018
    corecore