11,474 research outputs found

    ShapeFit and ShapeKick for Robust, Scalable Structure from Motion

    Full text link
    We introduce a new method for location recovery from pair-wise directions that leverages an efficient convex program that comes with exact recovery guarantees, even in the presence of adversarial outliers. When pairwise directions represent scaled relative positions between pairs of views (estimated for instance with epipolar geometry) our method can be used for location recovery, that is the determination of relative pose up to a single unknown scale. For this task, our method yields performance comparable to the state-of-the-art with an order of magnitude speed-up. Our proposed numerical framework is flexible in that it accommodates other approaches to location recovery and can be used to speed up other methods. These properties are demonstrated by extensively testing against state-of-the-art methods for location recovery on 13 large, irregular collections of images of real scenes in addition to simulated data with ground truth

    Dynamic load balancing in parallel KD-tree k-means

    Get PDF
    One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy

    Scalable Solutions for Automated Single Pulse Identification and Classification in Radio Astronomy

    Full text link
    Data collection for scientific applications is increasing exponentially and is forecasted to soon reach peta- and exabyte scales. Applications which process and analyze scientific data must be scalable and focus on execution performance to keep pace. In the field of radio astronomy, in addition to increasingly large datasets, tasks such as the identification of transient radio signals from extrasolar sources are computationally expensive. We present a scalable approach to radio pulsar detection written in Scala that parallelizes candidate identification to take advantage of in-memory task processing using Apache Spark on a YARN distributed system. Furthermore, we introduce a novel automated multiclass supervised machine learning technique that we combine with feature selection to reduce the time required for candidate classification. Experimental testing on a Beowulf cluster with 15 data nodes shows that the parallel implementation of the identification algorithm offers a speedup of up to 5X that of a similar multithreaded implementation. Further, we show that the combination of automated multiclass classification and feature selection speeds up the execution performance of the RandomForest machine learning algorithm by an average of 54% with less than a 2% average reduction in the algorithm's ability to correctly classify pulsars. The generalizability of these results is demonstrated by using two real-world radio astronomy data sets.Comment: In Proceedings of the 47th International Conference on Parallel Processing (ICPP 2018). ACM, New York, NY, USA, Article 11, 11 page

    Scalable Facility Location for Massive Graphs on Pregel-like Systems

    Full text link
    We propose a new scalable algorithm for facility location. Facility location is a classic problem, where the goal is to select a subset of facilities to open, from a set of candidate facilities F , in order to serve a set of clients C. The objective is to minimize the total cost of opening facilities plus the cost of serving each client from the facility it is assigned to. In this work, we are interested in the graph setting, where the cost of serving a client from a facility is represented by the shortest-path distance on the graph. This setting allows to model natural problems arising in the Web and in social media applications. It also allows to leverage the inherent sparsity of such graphs, as the input is much smaller than the full pairwise distances between all vertices. To obtain truly scalable performance, we design a parallel algorithm that operates on clusters of shared-nothing machines. In particular, we target modern Pregel-like architectures, and we implement our algorithm on Apache Giraph. Our solution makes use of a recent result to build sketches for massive graphs, and of a fast parallel algorithm to find maximal independent sets, as building blocks. In so doing, we show how these problems can be solved on a Pregel-like architecture, and we investigate the properties of these algorithms. Extensive experimental results show that our algorithm scales gracefully to graphs with billions of edges, while obtaining values of the objective function that are competitive with a state-of-the-art sequential algorithm
    • …
    corecore