10,087 research outputs found

    Brief Announcement: Fast and Scalable Group Mutual Exclusion

    Get PDF
    The group mutual exclusion (GME) problem is a generalization of the classical mutual exclusion problem in which every critical section is associated with a type or session. Critical sections belonging to the same session can execute concurrently, whereas critical sections belonging to different sessions must be executed serially. The well-known read-write mutual exclusion problem is a special case of the group mutual exclusion problem. In a shared memory system, locks based on traditional mutual exclusion or its variants are commonly used to manage contention among processes. In concurrent algorithms based on fine-grained synchronization, a single lock is used to protect access to a small number of shared objects (e.g., a lock for every tree node) so as to minimize contention window. Evidently, a large number of shared objects in the system would translate into a large number of locks. Also, when fine-grained synchronization is used, most lock accesses are expected to be uncontended in practice. Most existing algorithms for the solving the GME problem have high space-complexity per lock. Further, all algorithms except for one have high step-complexity in the uncontented case. This makes them unsuitable for use in concurrent algorithms based on fine-grained synchronization. In this work, we present a novel GME algorithm for an asynchronous shared-memory system that has O(1) space-complexity per GME lock when the system contains a large number of GME locks as well as O(1) step-complexity when the system contains no conflicting requests

    The Raincore API for clusters of networking elements

    Get PDF
    Clustering technology offers a way to increase overall reliability and performance of Internet information flow by strengthening one link in the chain without adding others. We have implemented this technology in a distributed computing architecture for network elements. The architecture, called Raincore, originated in the Reliable Array of Independent Nodes, or RAIN, research collaboration between the California Institute of Technology and the US National Aeronautics and Space Agency's Jet Propulsion Laboratory. The RAIN project focused on developing high-performance, fault-tolerant, portable clustering technology for spaceborne computing . The technology that emerged from this project became the basis for a spinoff company, Rainfinity, which has the exclusive intellectual property rights to the RAIN technology. The authors describe the Raincore conceptual architecture and distributed services, which are designed to make it easy for developers to port their applications to run on top of a cluster of networking elements. We include two applications: a Web server prototype that was part of the original RAIN research project and a commercial firewall cluster product from Rainfinity

    Towards a Software Transactional Memory for heterogeneous CPU-GPU processors

    Get PDF
    The heterogeneous Accelerated Processing Units (APUs) integrate a multi-core CPU and a GPU within the same chip. Modern APUs provide the programmer with platform atomics, used to communicate the CPU cores with the GPU using simple atomic datatypes. However, ensuring consistency for complex data types is a task delegated to programmers, who have to implement a mutual exclusion mechanism. Transactional Memory (TM) is an optimistic approach to implement mutual exclusion. With TM, shared data can be accessed by multiple computing threads speculatively, but changes are only visible if a transaction ends with no conflict with others in its memory accesses. TM has been studied and implemented in software and hardware for both CPU and GPU platforms, but an integrated solution has not been provided for APU processors. In this paper we present APUTM, a software TM designed to work on heterogeneous APU processors. The design of APUTM focuses on minimizing the access to shared metadata in order to reduce the communication overhead via expensive platform atomics. The main objective of APUTM is to help us understand the tradeoffs of implementing a sofware TM on an heterogeneous CPU-GPU platform and to identify the key aspects to be considered in each device. In our experiments, we compare the adaptability of APUTM to execute in one of the devices (CPU or GPU) or in both of them simultaneously. These experiments show that APUTM is able to outperform sequential execution of the applications.This work has been supported by projects TIN2013-42253-P and TIN2016-80920-R, from the Spanish Government, P11-TIC8144 and P12- TIC1470, from Junta de Andalucía, and Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking

    Full text link
    One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking

    An occam Style Communications System for UNIX Networks

    Get PDF
    This document describes the design of a communications system which provides occam style communications primitives under a Unix environment, using TCP/IP protocols, and any number of other protocols deemed suitable as underlying transport layers. The system will integrate with a low overhead scheduler/kernel without incurring significant costs to the execution of processes within the run time environment. A survey of relevant occam and occam3 features and related research is followed by a look at the Unix and TCP/IP facilities which determine our working constraints, and a description of the T9000 transputer's Virtual Channel Processor, which was instrumental in our formulation. Drawing from the information presented here, a design for the communications system is subsequently proposed. Finally, a preliminary investigation of methods for lightweight access control to shared resources in an environment which does not provide support for critical sections, semaphores, or busy waiting, is made. This is presented with relevance to mutual exclusion problems which arise within the proposed design. Future directions for the evolution of this project are discussed in conclusion

    Constant RMR Solutions to Reader Writer Synchronization

    Get PDF
    We study Reader-Writer Exclusion, a well-known variant of the Mutual Exclusion problem where processes are divided into two classes--readers and writers--and multiple readers can be in the Critical Section (CS) at the same time, although no process may be in the CS at the same time as a writer. Since readers don\u27t conflict with each other, they should not obstruct each other. Specifically, the concurrent entering property must be satisfied: if all writers are in the remainder section, each reader should be able to enter the CS in a bounded number of its own steps. Three versions of the Reader-Writer Exclusion problem are commonly studied--one where writers have priority over readers, another where readers have priority, and the last where neither class has priority over the other and no process may starve. To ensure high performance on Cache-Coherent (CC) and Distributed Shared Memory (DSM) multiprocessors, algorithms should be designed to generate as few remote memory references (RMRs) as possible. The ideal would be to achieve constant RMR complexity, i.e., the worst case number of RMRs that a process generates in order to enter and exit the CS once is a constant, independent of the number of processes. Constant RMR complexity algorithms have existed for Mutual Exclusion for two decades, but none exists for Reader-Writer Exclusion. Danek and Hadzilacos\u27 lower bound proof implies that it is impossible to achieve sublinear RMR complexity for DSM machines. For CC machines, the best existing bound, also due to Danek and Hadzilacos , is O(log n), where n is the number of processes. In this work, we present the first constant RMR complexity algorithms for all three versions of the Reader-Writer Exclusion problem (for CC machines)
    • …
    corecore