387 research outputs found

    Gaussian belief propagation for real-time decentralised inference

    Get PDF
    For embodied agents to interact intelligently with their surroundings, they require perception systems that construct persistent 3D representations of their environments. These representations must be rich; capturing 3D geometry, semantics, physical properties, affordances and much more. Constructing the environment representation from sensory observations is done via Bayesian probabilistic inference and in practical systems, inference must take place within the power, compactness and simplicity constraints of real products. Efficient inference within these constraints however remains computationally challenging and current systems often require heavy computational resources while delivering a fraction of the desired capabilities. Decentralised algorithms based on local message passing with in-place processing and storage offer a promising solution to current inference bottlenecks. They are well suited to take advantage of recent rapid developments in distributed asynchronous processing hardware to achieve efficient, scalable and low-power performance. In this thesis, we argue for Gaussian belief propagation (GBP) as a strong algorithmic framework for distributed, generic and incremental probabilistic estimation. GBP operates by passing messages between the nodes on a factor graph and can converge with arbitrary asynchronous message schedules. We envisage the factor graph being the fundamental master environment representation, and GBP the flexible inference tool to compute local in-place probabilistic estimates. In large real-time systems, GBP will act as the `glue' between specialised modules, with attention based processing bringing about local convergence in the graph in a just-in-time manner. This thesis contains several technical and theoretical contributions in the application of GBP to practical real-time inference problems in vision and robotics. Additionally, we implement GBP on novel graph processor hardware and demonstrate breakthrough speeds for bundle adjustment problems. Lastly, we present a prototype system for incrementally creating hierarchical abstract scene graphs by combining neural networks and probabilistic inference via GBP.Open Acces

    GraphLab: A New Framework for Parallel Machine Learning

    Full text link
    Designing and implementing efficient, provably correct parallel machine learning (ML) algorithms is challenging. Existing high-level parallel abstractions like MapReduce are insufficiently expressive while low-level tools like MPI and Pthreads leave ML experts repeatedly solving the same design challenges. By targeting common patterns in ML, we developed GraphLab, which improves upon abstractions like MapReduce by compactly expressing asynchronous iterative algorithms with sparse computational dependencies while ensuring data consistency and achieving a high degree of parallel performance. We demonstrate the expressiveness of the GraphLab framework by designing and implementing parallel versions of belief propagation, Gibbs sampling, Co-EM, Lasso and Compressed Sensing. We show that using GraphLab we can achieve excellent parallel performance on large scale real-world problems

    Graph-based Security and Privacy Analytics via Collective Classification with Joint Weight Learning and Propagation

    Full text link
    Many security and privacy problems can be modeled as a graph classification problem, where nodes in the graph are classified by collective classification simultaneously. State-of-the-art collective classification methods for such graph-based security and privacy analytics follow the following paradigm: assign weights to edges of the graph, iteratively propagate reputation scores of nodes among the weighted graph, and use the final reputation scores to classify nodes in the graph. The key challenge is to assign edge weights such that an edge has a large weight if the two corresponding nodes have the same label, and a small weight otherwise. Although collective classification has been studied and applied for security and privacy problems for more than a decade, how to address this challenge is still an open question. In this work, we propose a novel collective classification framework to address this long-standing challenge. We first formulate learning edge weights as an optimization problem, which quantifies the goals about the final reputation scores that we aim to achieve. However, it is computationally hard to solve the optimization problem because the final reputation scores depend on the edge weights in a very complex way. To address the computational challenge, we propose to jointly learn the edge weights and propagate the reputation scores, which is essentially an approximate solution to the optimization problem. We compare our framework with state-of-the-art methods for graph-based security and privacy analytics using four large-scale real-world datasets from various application scenarios such as Sybil detection in social networks, fake review detection in Yelp, and attribute inference attacks. Our results demonstrate that our framework achieves higher accuracies than state-of-the-art methods with an acceptable computational overhead.Comment: Network and Distributed System Security Symposium (NDSS), 2019. Dataset link: http://gonglab.pratt.duke.edu/code-dat
    • …
    corecore