972 research outputs found

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    The ear as a biometric

    No full text
    It is more than 10 years since the first tentative experiments in ear biometrics were conducted and it has now reached the ā€œadolescenceā€ of its development towards a mature biometric. Here we present a timely retrospective of the ensuing research since those early days. Whilst its detailed structure may not be as complex as the iris, we show that the ear has unique security advantages over other biometrics. It is most unusual, even unique, in that it supports not only visual and forensic recognition, but also acoustic recognition at the same time. This, together with its deep three-dimensional structure and its robust resistance to change with age will make it very difficult to counterfeit thus ensuring that the ear will occupy a special place in situations requiring a high degree of protection

    Quadratic Projection Based Feature Extraction with Its Application to Biometric Recognition

    Full text link
    This paper presents a novel quadratic projection based feature extraction framework, where a set of quadratic matrices is learned to distinguish each class from all other classes. We formulate quadratic matrix learning (QML) as a standard semidefinite programming (SDP) problem. However, the con- ventional interior-point SDP solvers do not scale well to the problem of QML for high-dimensional data. To solve the scalability of QML, we develop an efficient algorithm, termed DualQML, based on the Lagrange duality theory, to extract nonlinear features. To evaluate the feasibility and effectiveness of the proposed framework, we conduct extensive experiments on biometric recognition. Experimental results on three representative biometric recogni- tion tasks, including face, palmprint, and ear recognition, demonstrate the superiority of the DualQML-based feature extraction algorithm compared to the current state-of-the-art algorithm

    Biometrics for internetā€ofā€things security: A review

    Get PDF
    The large number of Internetā€ofā€Things (IoT) devices that need interaction between smart devices and consumers makes security critical to an IoT environment. Biometrics offers an interesting window of opportunity to improve the usability and security of IoT and can play a significant role in securing a wide range of emerging IoT devices to address security challenges. The purpose of this review is to provide a comprehensive survey on the current biometrics research in IoT security, especially focusing on two important aspects, authentication and encryption. Regarding authentication, contemporary biometricā€based authentication systems for IoT are discussed and classified based on different biometric traits and the number of biometric traits employed in the system. As for encryption, biometricā€cryptographic systems, which integrate biometrics with cryptography and take advantage of both to provide enhanced security for IoT, are thoroughly reviewed and discussed. Moreover, challenges arising from applying biometrics to IoT and potential solutions are identified and analyzed. With an insight into the stateā€ofā€theā€art research in biometrics for IoT security, this review paper helps advance the study in the field and assists researchers in gaining a good understanding of forwardā€looking issues and future research directions

    The fundamentals of unimodal palmprint authentication based on a biometric system: A review

    Get PDF
    Biometric system can be defined as the automated method of identifying or authenticating the identity of a living person based on physiological or behavioral traits. Palmprint biometric-based authentication has gained considerable attention in recent years. Globally, enterprises have been exploring biometric authorization for some time, for the purpose of security, payment processing, law enforcement CCTV systems, and even access to offices, buildings, and gyms via the entry doors. Palmprint biometric system can be divided into unimodal and multimodal. This paper will investigate the biometric system and provide a detailed overview of the palmprint technology with existing recognition approaches. Finally, we introduce a review of previous works based on a unimodal palmprint system using different databases

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies

    Iris Indexing and Ear Classification

    Get PDF
    To identify an individual using a biometric system, the input biometric data has to be typically compared against that of each and every identity in the existing database during the matching stage. The response time of the system increases with the increase in number of individuals (i.e., database size), which is not acceptable in real time monitoring or when working on large scale data. This thesis addresses the problem of reducing the number of database candidates to be considered during matching in the context of iris and ear recognition. In the case of iris, an indexing mechanism based on Burrows Wheeler Transform (BWT) is proposed. Experiments on the CASIA version 3 iris database show a significant reduction in both search time and search space, suggesting the potential of this scheme for indexing iris databases. The ear classification scheme proposed in the thesis is based on parameterizing the shape of the ear and assigning it to one of four classes: round, rectangle, oval and triangle. Experiments on the MAGNA database suggest the potential of this scheme for classifying ear databases

    A Wearable Wrist Band-Type System for Multimodal Biometrics Integrated with Multispectral Skin Photomatrix and Electrocardiogram Sensors

    Get PDF
    Multimodal biometrics are promising for providing a strong security level for personal authentication, yet the implementation of a multimodal biometric system for practical usage need to meet such criteria that multimodal biometric signals should be easy to acquire but not easily compromised. We developed a wearable wrist band integrated with multispectral skin photomatrix (MSP) and electrocardiogram (ECG) sensors to improve the issues of collectability, performance and circumvention of multimodal biometric authentication. The band was designed to ensure collectability by sensing both MSP and ECG easily and to achieve high authentication performance with low computation, efficient memory usage, and relatively fast response. Acquisition of MSP and ECG using contact-based sensors could also prevent remote access to personal data. Personal authentication with multimodal biometrics using the integrated wearable wrist band was evaluated in 150 subjects and resulted in 0.2% equal error rate ( EER ) and 100% detection probability at 1% FAR (false acceptance rate) ( PD.1 ), which is comparable to other state-of-the-art multimodal biometrics. An additional investigation with a separate MSP sensor, which enhanced contact with the skin, along with ECG reached 0.1% EER and 100% PD.1 , showing a great potential of our in-house wearable band for practical applications. The results of this study demonstrate that our newly developed wearable wrist band may provide a reliable and easy-to-use multimodal biometric solution for personal authentication
    • ā€¦
    corecore