5 research outputs found

    Secure and Unclonable Integrated Circuits

    Get PDF
    Semiconductor manufacturing is increasingly reliant in offshore foundries, which has raised concerns with counterfeiting, piracy, and unauthorized overproduction by the contract foundry. The recent shortage of semiconductors has aggravated such problems, with the electronic components market being flooded by recycled, remarked, or even out-of-spec, and defective parts. Moreover, modern internet connected applications require mechanisms that enable secure communication, which must be protected by security countermeasures to mitigate various types of attacks. In this thesis, we describe techniques to aid counterfeit prevention, and mitigate secret extraction attacks that exploit power consumption information. Counterfeit prevention requires simple and trustworthy identification. Physical unclonable functions (PUFs) harvest process variation to create a unique and unclonable digital fingerprint of an IC. However, learning attacks can model the PUF behavior, invalidating its unclonability claims. In this thesis, we research circuits and architectures to make PUFs more resilient to learning attacks. First, we propose the concept of non-monotonic response quantization, where responses not always encode the best performing circuit structure. Then, we explore the design space of PUF compositions, assessing the trade-off between stability and resilience to learning attacks. Finally, we introduce a lightweight key based challenge obfuscation technique that uses a chip unique secret to construct PUFs which are more resilient to learning attacks. Modern internet protocols demand message integrity, confidentiality, and (often) non-repudiation. Adding support for such mechanisms requires on-chip storage of a secret key. Even if the key is produced by a PUF, it will be subject to key extraction attacks that use power consumption information. Secure integrated circuits must address power analysis attacks with appropriate countermeasures. Traditional mitigation techniques have limited scope of protection, and impose several restrictions on how sensitive data must be manipulated. We demonstrate a bit-serial RISC-V microprocessor implementation with no plain-text data in the clear, where all values are protected using Boolean masking and differential domino logic. Software can run with little to no countermeasures, reducing code size and performance overheads. Our methodology is fully automated and can be applied to designs of arbitrary size or complexity. We also provide details on other key components such as clock randomizer, memory protection, and random number generator

    Fast and reliable PUF response evaluation from unsettled bistable rings

    No full text
    Bistable ring (BR) based strong PUFs are promising candidates for lightweight authentication applications. It has been observed that a good '0'/'1'-balance of their responses correlates with longer settling times. This is problematic, since the state-of-the-art evaluation method requires the BR to be settled in order to generate a reliable PUF response. We show that settling times can easily extend beyond 100 milli seconds for 70 percent of the responses in the TBR PUF, which is a BR-based PUF with good '0'/'1'-balance characteristics. Hence, it is practically impossible to wait for all BRs to settle, which results in a reliability penalty. In order to solve this problem, we present three new methods, which allow the evaluation of unsettled BRs with increased reliability compared to the state-of-the-art method. We were able to achieve evaluation times down to 1 micro second and improve response reliability from 80 percent to up to 98.5 percent. This enables the fast and reliable use of BR-based PUFs in strong

    Fast and reliable PUF response evaluation from unsettled bistable rings

    No full text
    Bistable ring (BR) based strong PUFs are promising candidates for lightweight authentication applications. It has been observed that a good '0'/'1'-balance of their responses correlates with longer settling times. This is problematic, since the state-of-the-art evaluation method requires the BR to be settled in order to generate a reliable PUF response. We show that settling times can easily extend beyond 100 ms for 70 percent of the responses in the TBR PUF, which is a BR-based PUF with good '0'/'1'-balance characteristics. Hence, it is practically impossible to wait for all BRs to settle, which results in a reliability penalty. In order to solve this problem, we present three new methods, which allow the evaluation of unsettled BRs with increased reliability compared to the state-of-the-art method. We were able to improve response reliability from 81 percent to up to 98.5 percent and achieve response reliabilities of 97 percent at an evaluation time of 320 ns. This enables the fast and reliable use of BR-based PUFs in strong PUF applications

    Phytochrome genes in higher plants: Structure,expression, and evolution

    Get PDF
    © 2006 Springer. All Rights Reserved. Phytochromes play critical roles in monitoring light quantity, quality, and periodicity in plants and they relay this photosensory information to a large number of signaling pathways that regulate plant growth and development. Given these complex functions, it is not surprising that the phytochrome apoproteins are encoded by small multigene families and that different forms of phytochrome regulate different aspects of photomorphogenesis. Over the course of the last decade, progress has been made in defining the number, molecular properties, and biological activities of the photoreceptors that constitute a plant R/FR sensing system. This chapter summarizes our current understanding of the structure of the genes that encode the phytochrome apoproteins (the PHY genes), the expression patterns of those genes, the nature of the phytochrome apoprotein family, and PHY gene evolution in seed plants. Phytochrome was discovered and its basic photochemical properties were first described through physiological studies of light-sensitive seed germination and photoperiodic effects on flowering (Borthwick, et al., 1948, Borthwick, et al., 1952). The pigment itself was initially isolated from extracts of dark-grown (etiolated) plant tissue in 1959 (Butler, et al., 1959), but it was not until much later that phytochrome was purified to homogeneity in an undegraded form (Vierstra and Quail, 1983). DNA sequences of gene and cDNA clones for oat etiolated-tissue spectroscopically in planta and purified in its native form, this dark-tissue phytochrome (now called phyA) remains the most completely biochemically and spectroscopically characterized form of the receptor. At various times throughout the first 40 years of the study of the abundant etiolated-tissue phytochrome, evidence for the presence and activity of additional forms of phytochrome, often referred to as green-tissue or light-stable phytochromes, was obtained. Initially, in physiological experiments, it was sometimes not possible to correlate specific in vivo phytochrome activities with the phytochrome provided the first complete descriptions of the apoprotein (Hershey et al., 1985). Because it accumulates to levels that permit it to be assayed known spectroscopic properties of the molecule. Later, direct evidence for multiple species of phytochrome in plants and in plant extracts was obtained using both spectroscopic and immunochemical methods (reviewed in Pratt, 1995). The molecular identities of these additional phytochrome forms were ultimately deduced from cDNA clones that were isolated by nucleic acid similarity to etiolated-tissue phytochrome sequences (Sharrock and Quail, 1989). More recently, analysis of a large number of complete and partial PHY gene or cDNA sequences from a broad sampling of plant phylogenetic groups and sequencing of several plant genomes have resulted in a much clearer and more general picture of what constitutes a higher plant R/FR photoreceptor family. It is likely that the major types of long-wavelength photosensing pigments have now been identified and the challenge that lies ahead is to understand how the signalling mechanisms, expression patterns, and interactions of these molecules contribute to plant responses to the R/FR environment. Extending the investigation of phytochrome gene families and their functions to additional angiosperm and gymnosperm genera will be an integral component of this effort and of our ability to utilize this growing understanding of phytochrome function to modify the agricultural properties of plants and to better understand the history of land plants
    corecore