6,277 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Multispectral segmentation of whole-brain MRI

    Get PDF
    Magnetic Resonance Imaging (MRI) is a widely used medical technology for diagnosis and detection of various tissue abnormalities, tumor detection, and in evaluation of either residual or recurrent tumors. This thesis work exploits MRI information acquired on brain tumor structure and physiological properties and uses a novel image segmentation technique to better delineate tissue differences.;MR image segmentation will be important in distinguishing between boundaries of different tissues in the brain. A segmentation software tool was developed that combines the different types of clinical MR images and presents them as a single colored image. This technique is based on the fuzzy c-means (FCM) clustering algorithm. The MR data sets are used to form five-dimensional feature vectors. These vectors are segmented by FCM into six tissue classes for normal brains and nine tissue classes for human brains with tumors. The segmented images are then compared with segmentation performed using Statistical Parametric Mapping (SPM2)---software that is commonly used for brain tissue segmentation. The results from segmenting the whole volume MRI using FCM show better distinction between tumor tissues than SPM2

    Intercomparison of medical image segmentation algorithms

    Get PDF
    Magnetic Resonance Imaging (MRI) is one of the most widely-used high quality imaging techniques, especially for brain imaging, compared to other techniques such as computed tomography and x-rays, mainly because it possesses better soft tissue contrast resolution. There are several stages involved in analyzing an MRI image, segmentation being one of the most important. Image segmentation is essentially the process of identifying and classifying the constituent parts of an image, and is usually very complex. Unfortunately, it suffers from artefacts including noise, partial volume effects and intensity inhomogeneities. Brain, being a very complicated structure, its precise segmentation is particularly necessary to delineate the borders of anatomically distinct regions and possible tumors. Many algorithms have been proposed for image segmentation, the most important being thresholding, region growing, and clustering methods such as k-means and fuzzy c-means algorithms. The main objective of this project was to investigate a representative number of different algorithms and compare their performance. Image segmentation algorithms, including thresholding, region growing, morphological operations and fuzzy c-means were applied to a selection of simulated and real brain MRI images, and the results compared. The project was realized by developing algorithms using the popular Matlab® software package. Qualitative comparisons were performed on real and simulated brain images, while quantitative comparisons were performed on simulated brain images, using a variety of different parameters, and results tabulated. It was found that the fuzzy c-means algorithm performed better than all the other algorithms, both qualitatively and quantitatively. After comparing the performance of all algorithms, it was concluded that, by combining one or two basic algorithms, a more effective algorithm could be developed for image segmentation that is more robust to noise, considers both intensity and spatial characteristics of an image, and which is computationally efficient.Magnetic Resonance Imaging (MRI) is one of the most widely-used high quality imaging techniques, especially for brain imaging, compared to other techniques such as computed tomography and x-rays, mainly because it possesses better soft tissue contrast resolution. There are several stages involved in analyzing an MRI image, segmentation being one of the most important. Image segmentation is essentially the process of identifying and classifying the constituent parts of an image, and is usually very complex. Unfortunately, it suffers from artefacts including noise, partial volume effects and intensity inhomogeneities. Brain, being a very complicated structure, its precise segmentation is particularly necessary to delineate the borders of anatomically distinct regions and possible tumors. Many algorithms have been proposed for image segmentation, the most important being thresholding, region growing, and clustering methods such as k-means and fuzzy c-means algorithms. The main objective of this project was to investigate a representative number of different algorithms and compare their performance. Image segmentation algorithms, including thresholding, region growing, morphological operations and fuzzy c-means were applied to a selection of simulated and real brain MRI images, and the results compared. The project was realized by developing algorithms using the popular Matlab® software package. Qualitative comparisons were performed on real and simulated brain images, while quantitative comparisons were performed on simulated brain images, using a variety of different parameters, and results tabulated. It was found that the fuzzy c-means algorithm performed better than all the other algorithms, both qualitatively and quantitatively. After comparing the performance of all algorithms, it was concluded that, by combining one or two basic algorithms, a more effective algorithm could be developed for image segmentation that is more robust to noise, considers both intensity and spatial characteristics of an image, and which is computationally efficient

    Depth Segmentation Method for Cancer Detection in Mammography Images

    Get PDF
    Breast cancer detection remains a subject matter of intense and also a stream that will create a path for numerous debates. Mammography has long been the mainstay of breast cancer detection and is the only screening test proven to reduce mortality. Computer-aided diagnosis (CAD) systems have the potential to assist radiologists in the early detection of cancer. Many techniques were introduced based on SVM classifier, spatial and frequency domain, active contour method, k-NN clustering method but these methods have so many disadvantages on the SNR ratio, efficiency etc. The quality of detection of cancer cells is dependent with the segmentation of the mammography image. Here a new method is proposed for segmentation. This algorithm focuses to segment the image depth wise and also coloured based segmentation is implemented. Here the feature identification and detection of malignant and benign cells are done more easily and also to increase the efficiency to detect the early stages of breast cancer through mammography images. In which the relative signal enhancement technique is also done for high dynamic range images. Markovian random function can be used in the depth segmentation. Markov Random Field (MRF) is used in mammography images. It is because this method can model intensity in homogeneities occurring in these images. This will be helpful to find the featured tumor DOI: 10.17762/ijritcc2321-8169.15023

    A graph theoretic approach to scene matching

    Get PDF
    The ability to match two scenes is a fundamental requirement in a variety of computer vision tasks. A graph theoretic approach to inexact scene matching is presented which is useful in dealing with problems due to imperfect image segmentation. A scene is described by a set of graphs, with nodes representing objects and arcs representing relationships between objects. Each node has a set of values representing the relations between pairs of objects, such as angle, adjacency, or distance. With this method of scene representation, the task in scene matching is to match two sets of graphs. Because of segmentation errors, variations in camera angle, illumination, and other conditions, an exact match between the sets of observed and stored graphs is usually not possible. In the developed approach, the problem is represented as an association graph, in which each node represents a possible mapping of an observed region to a stored object, and each arc represents the compatibility of two mappings. Nodes and arcs have weights indicating the merit or a region-object mapping and the degree of compatibility between two mappings. A match between the two graphs corresponds to a clique, or fully connected subgraph, in the association graph. The task is to find the clique that represents the best match. Fuzzy relaxation is used to update the node weights using the contextual information contained in the arcs and neighboring nodes. This simplifies the evaluation of cliques. A method of handling oversegmentation and undersegmentation problems is also presented. The approach is tested with a set of realistic images which exhibit many types of sementation errors

    Fast Multi-parametric Acquisition Methods for Quantitative Brain MRI

    Get PDF

    Fast Multi-parametric Acquisition Methods for Quantitative Brain MRI

    Get PDF
    • …
    corecore