173 research outputs found

    Experimental Evaluation of Cache-Related Preemption Delay Aware Timing Analysis

    Get PDF
    In the presence of caches, preemptive scheduling may incur a significant overhead referred to as cache-related preemption delay (CRPD). CRPD is caused by preempting tasks evicting cached memory blocks of preempted tasks, which have to be reloaded when the preempted tasks resume their execution. In this paper we experimentally evaluate state-of-the-art techniques to account for the CRPD during timing analysis. We find that purely synthetically-generated task sets may yield misleading conclusions regarding the relative precision of different CRPD analysis techniques and the impact of CRPD on schedulability in general. Based on task characterizations obtained by static worst-case execution time (WCET) analysis, we shed new light on the state of the art

    A Framework to Quantify the Overestimations of Static WCET Analysis

    Get PDF
    International audienceTo reduce complexity while computing an upper bound on the worst-case execution time, static WCET analysis performs over-approximations. This feeds the general feeling that static WCET estimations can be far above the real WCET. This feeling is strengthened when these estimations are compared to measured execution times: generally, it is very unlikely to capture the worstcase from observations, then the difference between the highest watermark and the proven WCET upper bound might be considerable. In this paper, we introduce a framework to quantify the possible overestimation on WCET upper bounds obtained by static analysis. The objective is to derive a lower bound on the WCET to complement the upper bound

    Cache behavior prediction by abstract interpretation

    Get PDF
    Abstract interpretation is a technique for the static detection of dynamic properties of programs. It is semantics based, that is, it computes approximative properties of the semantics of programs. On this basis, it allows for correctness proofs of analyses. It replaces commonly used ad hoc techniques by systematic, provable ones, and it allows the automatic generation of analyzers from specifications as in the Program Analyzer Generator, PAG. In this paper, abstract interpretation is applied to the problem of predicting the cache behavior of programs. Abstract semantics of machine programs are defined which determine the contents of caches. For interprocedural analysis, existing methods are examined and a new approach that is especially tailored for the cache analysis is presented. This allows for a static classification of the cache behavior of memory references of programs. The calculated information can be used to sharpen worst case execution time estimations. It is possible to analyze instruction, data, and combined instruction/data caches for common (re)placement and write strategies. Experimental results are presented that demonstrate the applicability of the analysis

    The Heptane Static Worst-Case Execution Time Estimation Tool

    Get PDF
    Estimation of worst-case execution times (WCETs) is required to validate the temporal behavior of hard real time systems. Heptane is an open-source software program that estimates upper bounds of execution times on MIPS and ARM v7 architectures, offered to the WCET estimation community to experiment new WCET estimation techniques. The software architecture of Heptane was designed to be as modular and extensible as possible to facilitate the integration of new approaches. This paper is devoted to a description of Heptane, and includes information on the analyses it implements, how to use it and extend it

    Scope-Based Method Cache Analysis

    Get PDF
    The quest for time-predictable systems has led to the exploration of new hardware architectures that simplify analysis and reasoning in the temporal domain, while still providing competitive performance. For the instruction memory, the method cache is a conceptually attractive solution, as it requests memory transfers at well-defined instructions only. In this article, we present a new cache analysis framework that generalizes and improves work on cache persistence analysis. The analysis demonstrates that a global view on the cache behavior permits the precise analyses of caches which are hard to analyze by inspecting cache state locally

    Improving the Precision of Abstract Interpretation Based Cache Persistence Analysis

    Full text link
    When designing hard real-time embedded systems, it is required to estimate the worst-case execution time (WCET) of each task for schedulability analysis. Precise cache persistence analysis can significantly tighten the WCET estimation, especially when the program has many loops. Methods for persistence analysis should safely and precisely classify memory references as persistent. Ex-isting safe approaches suffer from multiple sources of pessimism and may not provide precise results. In this paper, we first identify some sources of pessimism that two recent approaches based on younger set and may analysis may encounter. Then, we propose two methods to eliminate these sources of pessimism. The first method improves the update function of the may analysis-based approach; and the second method integrates the younger set-based and may analysis-based approaches together to further reduce pes-simism. We also prove the two proposed methods are still safe. We evaluate the approaches on a set of benchmarks and observe the number of memory references classified as persistent is increased by the proposed methods. Moreover, we empirically compare the storage space and analysis time used by different methods

    Influence of Memory Hierarchies on Predictability for Time Constrained Embedded Software

    Full text link
    Safety-critical embedded systems having to meet real-time constraints are expected to be highly predictable in order to guarantee at design time that certain timing deadlines will always be met. This requirement usually prevents designers from utilizing caches due to their highly dynamic, thus hardly predictable behavior. The integration of scratchpad memories represents an alternative approach which allows the system to benefit from a performance gain comparable to that of caches while at the same time maintaining predictability. In this work, we compare the impact of scratchpad memories and caches on worst case execution time (WCET) analysis results. We show that caches, despite requiring complex techniques, can have a negative impact on the predicted WCET, while the estimated WCET for scratchpad memories scales with the achieved Performance gain at no extra analysis cost.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    Instruction Caches in Static WCET Analysis of Artificially Diversified Software

    Get PDF
    Artificial Software Diversity is a well-established method to increase security of computer systems by thwarting code-reuse attacks, which is particularly beneficial in safety-critical real-time systems. However, static worst-case execution time (WCET) analysis on complex hardware involving caches only delivers sound results for single versions of the program, as it relies on absolute addresses for all instructions. To overcome this problem, we present an abstract interpretation based instruction cache analysis that provides a safe yet precise upper bound for the execution of all variants of a program. We achieve this by integrating uncertainties in the absolute and relative positioning of code fragments when updating the abstract cache state during the analysis. We demonstrate the effectiveness of our approach in an in-depth evaluation and provide an overview of the impact of different diversity techniques on the WCET estimations

    How to Compute Worst-Case Execution Time by Optimization Modulo Theory and a Clever Encoding of Program Semantics

    No full text
    International audienceIn systems with hard real-time constraints, it is necessary to compute upper bounds on the worst-case execution time (WCET) of programs; the closer the bound to the real WCET, the better. This is especially the case of synchronous reactive control loops with a fixed clock; the WCET of the loop body must not exceed the clock period. We compute the WCET (or at least a close upper bound thereof) as the solution of an optimization modulo theory problem that takes into account the semantics of the program, in contrast to other methods that compute the longest path whether or not it is feasible according to these semantics. Optimization modulo theory extends satisfiability modulo theory (SMT) to maximization problems. Immediate encodings of WCET problems into SMT yield formulas intractable for all current production-grade solvers; this is inherent to the DPLL(T) approach to SMT implemented in these solvers. By conjoining some appropriate "cuts" to these formulas, we considerably reduce the computation time of the SMT-solver. We experimented our approach on a variety of control programs, using the OTAWA analyzer both as baseline and as underlying microarchitectural analysis for our analysis, and show notable improvement on the WCET bound on a variety of benchmarks and control programs
    • …
    corecore