433 research outputs found

    Combining Implicit Function Learning and Parametric Models for {3D} Human Reconstruction

    Get PDF
    Implicit functions represented as deep learning approximations are powerful for reconstructing 3D surfaces. However, they can only produce static surfaces that are not controllable, which provides limited ability to modify the resulting model by editing its pose or shape parameters. Nevertheless, such features are essential in building flexible models for both computer graphics and computer vision. In this work, we present methodology that combines detail-rich implicit functions and parametric representations in order to reconstruct 3D models of people that remain controllable and accurate even in the presence of clothing. Given sparse 3D point clouds sampled on the surface of a dressed person, we use an Implicit Part Network (IP-Net)to jointly predict the outer 3D surface of the dressed person, the and inner body surface, and the semantic correspondences to a parametric body model. We subsequently use correspondences to fit the body model to our inner surface and then non-rigidly deform it (under a parametric body + displacement model) to the outer surface in order to capture garment, face and hair detail. In quantitative and qualitative experiments with both full body data and hand scans we show that the proposed methodology generalizes, and is effective even given incomplete point clouds collected from single-view depth images. Our models and code can be downloaded from http://virtualhumans.mpi-inf.mpg.de/ipnet

    Real Time Scanning-Modeling System for Architecture Design and Construction

    Get PDF
    The disconnection between architectural form and materiality has become an important issue in recent years. Architectural form is mainly decided by the designer, while material data is often treated as an afterthought which doesn’t factor in decision-making directly. This study proposes a new, real-time scanning-modeling system for computational design and autonomous robotic construction. By using cameras to scan the raw materials, this system would get related data and build 3D models in real time. These data would be used by a computer to calculate rational outcomes and help a robot make decisions about its construction paths and methods. The result of an application pavilion shows that data of raw materials, architectural design, and robotic construction can be integrated into a digital chain. The method and gain of the material-oriented design approach are discussed and future research on using different source materials is laid out

    Human detection in surveillance videos and its applications - a review

    Get PDF
    Detecting human beings accurately in a visual surveillance system is crucial for diverse application areas including abnormal event detection, human gait characterization, congestion analysis, person identification, gender classification and fall detection for elderly people. The first step of the detection process is to detect an object which is in motion. Object detection could be performed using background subtraction, optical flow and spatio-temporal filtering techniques. Once detected, a moving object could be classified as a human being using shape-based, texture-based or motion-based features. A comprehensive review with comparisons on available techniques for detecting human beings in surveillance videos is presented in this paper. The characteristics of few benchmark datasets as well as the future research directions on human detection have also been discussed

    Matching and compressing sequences of visual hulls

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 61-63).In this thesis, we implement the polyhedral visual hull (PVH) algorithm in a modular software system to reconstruct 3D meshes from 2D images and camera poses. We also introduce the new idea of visual hull graphs. For data, using an eight camera synchronous system after multi-camera calibration, we collect video sequences to study the pose and motion of people. For efficiency in VH processing, we compress 2D input contours to reduce te number of triangles in the output mesh and demonstrate how subdivision surfaces smoothly approximate the irregular output mesh in 3D. After generating sequences of visual hulls from source video, to define a visual hull graph, we use a simple distance metric for pose by calculating Chamfer distances between 2D shape contours. At each frame of our graph, we store a view independent 3D pose and calculate the transition probability to any other frame based on similarity of pose. To test our approach, we synthesize new realistic motion by walking through cycles in the graph. Our results are new videos of arbitrary length and viewing direction based on a sample source video.by Naveen Goela.M.Eng

    Automatic modeling of virtual humans and body clothing

    Get PDF
    Highly realistic virtual human models are rapidly becoming commonplace in computer graphics. These models, often represented by complex shape and requiring labor-intensive process, challenge the problem of automatic modeling. The problem and solutions to automatic modeling of animatable virtual humans are studied. Methods for capturing the shape of real people, parameterization techniques for modeling static shape (the variety of human body shapes) and dynamic shape (how the body shape changes as it moves) of virtual humans are classified, summarized and compared. Finally, methods for clothed virtual humans are reviewe

    State of the Art on Stylized Fabrication

    Get PDF
    © 2018 The Authors Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd. Digital fabrication devices are powerful tools for creating tangible reproductions of 3D digital models. Most available printing technologies aim at producing an accurate copy of a tridimensional shape. However, fabrication technologies can also be used to create a stylistic representation of a digital shape. We refer to this class of methods as ‘stylized fabrication methods’. These methods abstract geometric and physical features of a given shape to create an unconventional representation, to produce an optical illusion or to devise a particular interaction with the fabricated model. In this state-of-the-art report, we classify and overview this broad and emerging class of approaches and also propose possible directions for future research

    New media and impressionism

    Get PDF
    This master’s thesis is framed in the areas of New Media Art (NMA) and Human Computer Interaction (HCI). In particular, it is focused in the study of New Media Art pieces that share a set of characteristics (the most important one being that they are composed by atomic elements), might be explicitly interactive, and are usually exhibited in public settings or have been designed to be consumed by a large simultaneous audience. The content of the thesis can be divided in four big items: 1- The review of a certain set of NMA pieces, their characteristics, and some similarities hold between them and the impressionist movement that emerged at the second half of the 19th century, along with some visual perception principles of Gestalt psychology. 2- A selection and an adaptation of pre-existing theoretical frameworks for modelling interaction in public settings. These theoretical frameworks comprise a set of tools for describing, analysing, and designing New Media Art pieces. 3- The presentation of a set of selected artworks authored or coauthored by the author of this thesis. A description of their characteristics and technology will be presented. 4- The introduction of two tools for artistic production, which were instrumental for the construction of some of the artworks here presented: Sendero (an LED lighting system), and N.IMP (a tool for real time visual content generation)

    Non-photorealistic volume rendering using stippling techniques

    Get PDF
    Journal ArticleSimulating hand-drawn illustration techniques can succinctly express information in a manner that is communicative and informative. We present a framework for an interactive direct volume illustration system that simulates traditional stipple drawing. By combining the principles of artistic and scientific illustration, we explore several feature enhancement techniques to create effective, interactive visualizations of scientific and medical datasets. We also introduce a rendering mechanism that generates appropriate point lists at all resolutions during an automatic preprocess, and modifies rendering styles through different combinations of these feature enhancements. The new system is an effective way to interactively preview large, complex volume datasets in a concise, meaningful, and illustrative manner. Volume stippling is effective for many applications and provides a quick and efficient method to investigate volume models

    Deep deformable models for 3D human body

    Get PDF
    Deformable models are powerful tools for modelling the 3D shape variations for a class of objects. However, currently the application and performance of deformable models for human body are restricted due to the limitations in current 3D datasets, annotations, and the model formulation itself. In this thesis, we address the issue by making the following contributions in the field of 3D human body modelling, monocular reconstruction and data collection/annotation. Firstly, we propose a deep mesh convolutional network based deformable model for 3D human body. We demonstrate the merit of this model in the task of monocular human mesh recovery. While outperforming current state of the art models in mesh recovery accuracy, the model is also light weighted and more flexible as it can be trained end-to-end and fine-tuned for a specific task. A second contribution is a bone level skinned model of 3D human mesh, in which bone modelling and identity-specific variation modelling are decoupled. Such formulation allows the use of mesh convolutional networks for capturing detailed identity specific variations, while explicitly controlling and modelling the pose variations through linear blend skinning with built-in motion constraints. This formulation not only significantly increases the accuracy in 3D human mesh reconstruction, but also facilitates accurate in the wild character animation and retargetting. Finally we present a large scale dataset of over 1.3 million 3D human body scans in daily clothing. The dataset contains over 12 hours of 4D recordings at 30 FPS, consisting of 7566 dynamic sequences of 3D meshes from 4205 subjects. We propose a fast and accurate sequence registration pipeline which facilitates markerless motion capture and automatic dense annotation for the raw scans, leading to automatic synthetic image and annotation generation that boosts the performance for tasks such as monocular human mesh reconstruction.Open Acces

    Rendering Geometry with Relief Textures

    Get PDF
    International audienceWe propose to render geometry using an image based representation. Geometric information is encoded by a texture with depth and rendered by rasterizing the bounding box geometry. For each resulting fragment, a shader computes the intersection of the corresponding ray with the geometry using pre-computed information to accelerate the computation. Great care is taken to be artifact free even when zoomed in or at grazing angles. We integrate our algorithm with reverse perspective projection to represent a larger class of shapes. The extra texture requirement is small and the rendering cost is output sensitive so our representation can be used to model many parts of a 3D scene
    corecore