578 research outputs found

    High-DOF Motion Planning in Dynamic Environments using Trajectory Optimization

    Get PDF
    Motion planning is an important problem in robotics, computer-aided design, and simulated environments. Recently, robots with a high number of controllable joints are increasingly used for different applications, including in dynamic environments with humans and other moving objects. In this thesis, we address three main challenges related to motion planning algorithms for high-DOF robots in dynamic environments: 1) how to compute a feasible and constrained motion trajectory in dynamic environments; 2) how to improve the performance of realtime computations for high-DOF robots; 3) how to model the uncertainty in the environment representation and the motion of the obstacles. We present a novel optimization-based algorithm for motion planning in dynamic environments. We model various constraints corresponding to smoothness, as well as kinematics and dynamics bounds, as a cost function, and perform stochastic trajectory optimization to compute feasible high-dimensional trajectories. In order to handle arbitrary dynamic obstacles, we use a replanning framework that interleaves planning with execution. We also parallelize our approach on multiple CPU or GPU cores to improve the performance and perform realtime computations. In order to deal with the uncertainty of dynamic environments, we present an efficient probabilistic collision detection algorithm that takes into account noisy sensor data. We predict the future obstacle motion as Gaussian distributions, and compute the bounded collision probability between a high-DOF robot and obstacles. We highlight the performance of our algorithms in simulated environments as well as with a 7-DOF Fetch arm.Doctor of Philosoph

    Automatic motion of manipulator using sampling based motion planning algorithms - application in service robotics

    Get PDF
    The thesis presents new approaches for autonomous motion execution of a robotic arm. The calculation of the motion is called motion planning and requires the computation of robot arm's path. The text covers the calculation of the path and several algorithms have been therefore implemented and tested in several real scenarios. The work focuses on sampling based planners, which means that the path is created by connecting explicitly random generated points in the free space. The algorithms can be divided into three categories: those that are working in configuration space(C-Space)(C- Space is the set of all possible joint angles of a robotic arm) , the mixed approaches using both Cartesian and C-Space and those that are using only the Cartesian space. Although Cartesian space seems more appropriate, due to dimensionality, this work illustrates that the C-Space planners can achieve comparable or better results. Initially an enhanced approach for efficient collision detection in C-Space, used by the planners, is presented. Afterwards the N dimensional cuboid region, notated as Rq, is defined. The Rq configures the C-Space so that the sampling is done close to a selected, called center, cell. The approach is enhanced by the decomposition of the Cartesian space into cells. A cell is selected appropriately if: (a) is closer to the target position and (b) lies inside the constraints. Inverse kinematics(IK) are applied to calculate a centre configuration used later by the Rq. The CellBiRRT is proposed and combines all the features. Continuously mixed approaches that do not require goal configuration or an analytic solution of IK are presented. Rq regions as well as Cells are also integrated in these approaches. A Cartesian sampling based planner using quaternions for linear interpolation is also proposed and tested. The common feature of the so far algorithms is the feasibility which is normally against the optimality. Therefore an additional part of this work deals with the optimality of the path. An enhanced approach of CellBiRRT, called CellBiRRT*, is developed and promises to compute shorter paths in a reasonable time. An on-line method using both CellBiRRT and CellBiRRT* is proposed where the path of the robot arm is improved and recalculated even if sudden changes in the environment are detected. Benchmarking with the state of the art algorithms show the good performance of the proposed approaches. The good performance makes the algorithms suitable for real time applications. In this work several applications are described: Manipulative skills, an approach for an semi-autonomous control of the robot arm and a motion planning library. The motion planning library provides the necessary interface for easy use and further development of the motion planning algorithms. It can be used as the part connecting the manipulative skill designing and the motion of a robotic arm

    What is This?

    Get PDF
    Downloaded from ijr.sagepub.com at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014Article Motion planning with sequential convex optimization and convex collision checkin

    Tight Collision Probability for UAV Motion Planning in Uncertain Environment

    Full text link
    Operating unmanned aerial vehicles (UAVs) in complex environments that feature dynamic obstacles and external disturbances poses significant challenges, primarily due to the inherent uncertainty in such scenarios. Additionally, inaccurate robot localization and modeling errors further exacerbate these challenges. Recent research on UAV motion planning in static environments has been unable to cope with the rapidly changing surroundings, resulting in trajectories that may not be feasible. Moreover, previous approaches that have addressed dynamic obstacles or external disturbances in isolation are insufficient to handle the complexities of such environments. This paper proposes a reliable motion planning framework for UAVs, integrating various uncertainties into a chance constraint that characterizes the uncertainty in a probabilistic manner. The chance constraint provides a probabilistic safety certificate by calculating the collision probability between the robot's Gaussian-distributed forward reachable set and states of obstacles. To reduce the conservatism of the planned trajectory, we propose a tight upper bound of the collision probability and evaluate it both exactly and approximately. The approximated solution is used to generate motion primitives as a reference trajectory, while the exact solution is leveraged to iteratively optimize the trajectory for better results. Our method is thoroughly tested in simulation and real-world experiments, verifying its reliability and effectiveness in uncertain environments.Comment: Paper Accepted by IROS 202
    • …
    corecore