65 research outputs found

    Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases

    Get PDF
    Cardiothoracic and pulmonary diseases are a significant cause of mortality and morbidity worldwide. The COVID-19 pandemic has highlighted the lack of access to clinical care, the overburdened medical system, and the potential of artificial intelligence (AI) in improving medicine. There are a variety of diseases affecting the cardiopulmonary system including lung cancers, heart disease, tuberculosis (TB), etc., in addition to COVID-19-related diseases. Screening, diagnosis, and management of cardiopulmonary diseases has become difficult owing to the limited availability of diagnostic tools and experts, particularly in resource-limited regions. Early screening, accurate diagnosis and staging of these diseases could play a crucial role in treatment and care, and potentially aid in reducing mortality. Radiographic imaging methods such as computed tomography (CT), chest X-rays (CXRs), and echo ultrasound (US) are widely used in screening and diagnosis. Research on using image-based AI and machine learning (ML) methods can help in rapid assessment, serve as surrogates for expert assessment, and reduce variability in human performance. In this Special Issue, “Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases”, we have highlighted exemplary primary research studies and literature reviews focusing on novel AI/ML methods and their application in image-based screening, diagnosis, and clinical management of cardiopulmonary diseases. We hope that these articles will help establish the advancements in AI

    Developing and Applying CAD-generated Image Markers to Assist Disease Diagnosis and Prognosis Prediction

    Get PDF
    Developing computer-aided detection and/or diagnosis (CAD) schemes has been an active research topic in medical imaging informatics (MII) with promising results in assisting clinicians in making better diagnostic and/or clinical decisions in the last two decades. To build robust CAD schemes, we need to develop state-of-the-art image processing and machine learning (ML) algorithms to optimize each step in the CAD pipeline, including detection and segmentation of the region of interest, optimal feature generation, followed by integration to ML classifiers. In my dissertation, I conducted multiple studies investigating the feasibility of developing several novel CAD schemes in the field of medicine concerning different purposes. The first study aims to investigate how to optimally develop a CAD scheme of contrast-enhanced digital mammography (CEDM) images to classify breast masses. CEDM includes both low energy (LE) and dual-energy subtracted (DES) images. A CAD scheme was applied to segment mass regions depicting LE and DES images separately. Optimal segmentation results generated from DES images were also mapped to LE images or vice versa. After computing image features, multilayer perceptron-based ML classifiers integrated with a correlation-based feature subset evaluator and leave-one-case-out cross-validation method were built to classify mass regions. The study demonstrated that DES images eliminated the overlapping effect of dense breast tissue, which helps improve mass segmentation accuracy. By mapping mass regions segmented from DES images to LE images, CAD yields significantly improved performance. The second study aims to develop a new quantitative image marker computed from the pre-intervention computed tomography perfusion (CTP) images and evaluate its feasibility to predict clinical outcome among acute ischemic stroke (AIS) patients undergoing endovascular mechanical thrombectomy after diagnosis of large vessel occlusion. A CAD scheme is first developed to pre-process CTP images of different scanning series for each study case, perform image segmentation, quantify contrast-enhanced blood volumes in bilateral cerebral hemispheres, and compute image features related to asymmetrical cerebral blood flow patterns based on the cumulative cerebral blood flow curves of two hemispheres. Next, image markers based on a single optimal feature and ML models fused with multi-features are developed and tested to classify AIS cases into two classes of good and poor prognosis based on the Modified Rankin Scale. The study results show that ML model trained using multiple features yields significantly higher classification performance than the image marker using the best single feature (p<0.01). This study demonstrates the feasibility of developing a new CAD scheme to predict the prognosis of AIS patients in the hyperacute stage, which has the potential to assist clinicians in optimally treating and managing AIS patients. The third study aims to develop and test a new CAD scheme to predict prognosis in aneurysmal subarachnoid hemorrhage (aSAH) patients using brain CT images. Each patient had two sets of CT images acquired at admission and prior to discharge. CAD scheme was applied to segment intracranial brain regions into four subregions, namely, cerebrospinal fluid (CSF), white matter (WM), gray matter (GM), and extraparenchymal blood (EPB), respectively. CAD then computed nine image features related to 5 volumes of the segmented sulci, EPB, CSF, WM, GM, and four volumetrical ratios to sulci. Subsequently, 16 ML models were built using multiple features computed either from CT images acquired at admission or prior to discharge to predict eight prognosis related parameters. The results show that ML models trained using CT images acquired at admission yielded higher accuracy to predict short-term clinical outcomes, while ML models trained using CT images acquired prior to discharge had higher accuracy in predicting long-term clinical outcomes. Thus, this study demonstrated the feasibility of predicting the prognosis of aSAH patients using new ML model-generated quantitative image markers. The fourth study aims to develop and test a new interactive computer-aided detection (ICAD) tool to quantitatively assess hemorrhage volumes. After loading each case, the ICAD tool first segments intracranial brain volume, performs CT labeling of each voxel. Next, contour-guided image-thresholding techniques based on CT Hounsfield Unit are used to estimate and segment hemorrhage-associated voxels (ICH). Next, two experienced neurology residents examine and correct the markings of ICH categorized into either intraparenchymal hemorrhage (IPH) or intraventricular hemorrhage (IVH) to obtain the true markings. Additionally, volumes and maximum two-dimensional diameter of each sub-type of hemorrhage are also computed for understanding ICH prognosis. The performance to segment hemorrhage regions between semi-automated ICAD and the verified neurology residents’ true markings is evaluated using dice similarity coefficient (DSC). The data analysis results in the study demonstrate that the new ICAD tool enables to segment and quantify ICH and other hemorrhage volumes with higher DSC. Finally, the fifth study aims to bridge the gap between traditional radiomics and deep learning systems by comparing and assessing these two technologies in classifying breast lesions. First, one CAD scheme is applied to segment lesions and compute radiomics features. In contrast, another scheme applies a pre-trained residual net architecture (ResNet50) as a transfer learning model to extract automated features. Next, the principal component algorithm processes both initially computed radiomics and automated features to create optimal feature vectors. Then, several support vector machine (SVM) classifiers are built using the optimized radiomics or automated features. This study indicates that (1) CAD built using only deep transfer learning yields higher classification performance than the traditional radiomic-based model, (2) SVM trained using the fused radiomics and automated features does not yield significantly higher AUC, and (3) radiomics and automated features contain highly correlated information in lesion classification. In summary, in all these studies, I developed and investigated several key concepts of CAD pipeline, including (i) pre-processing algorithms, (ii) automatic detection and segmentation schemes, (iii) feature extraction and optimization methods, and (iv) ML and data analysis models. All developed CAD models are embedded with interactive and visually aided graphical user interfaces (GUIs) to provide user functionality. These techniques present innovative approaches for building quantitative image markers to build optimal ML models. The study results indicate the underlying CAD scheme's potential application to assist radiologists in clinical settings for their assessments in diagnosing disease and improving their overall performance

    腹部CT像上の複数オブジェクトのセグメンテーションのための統計的手法に関する研究

    Get PDF
    Computer aided diagnosis (CAD) is the use of a computer-generated output as an auxiliary tool for the assistance of efficient interpretation and accurate diagnosis. Medical image segmentation has an essential role in CAD in clinical applications. Generally, the task of medical image segmentation involves multiple objects, such as organs or diffused tumor regions. Moreover, it is very unfavorable to segment these regions from abdominal Computed Tomography (CT) images because of the overlap in intensity and variability in position and shape of soft tissues. In this thesis, a progressive segmentation framework is proposed to extract liver and tumor regions from CT images more efficiently, which includes the steps of multiple organs coarse segmentation, fine segmentation, and liver tumors segmentation. Benefit from the previous knowledge of the shape and its deformation, the Statistical shape model (SSM) method is firstly utilized to segment multiple organs regions robustly. In the process of building an SSM, the correspondence of landmarks is crucial to the quality of the model. To generate a more representative prototype of organ surface, a k-mean clustering method is proposed. The quality of the SSMs, which is measured by generalization ability, specificity, and compactness, was improved. We furtherly extend the shapes correspondence to multiple objects. A non-rigid iterative closest point surface registration process is proposed to seek more properly corresponded landmarks across the multi-organ surfaces. The accuracy of surface registration was improved as well as the model quality. Moreover, to localize the abdominal organs simultaneously, we proposed a random forest regressor cooperating intensity features to predict the position of multiple organs in the CT image. The regions of the organs are substantially restrained using the trained shape models. The accuracy of coarse segmentation using SSMs was increased by the initial information of organ positions.Consequently, a pixel-wise segmentation using the classification of supervoxels is applied for the fine segmentation of multiple organs. The intensity and spatial features are extracted from each supervoxels and classified by a trained random forest. The boundary of the supervoxels is closer to the real organs than the previous coarse segmentation. Finally, we developed a hybrid framework for liver tumor segmentation in multiphase images. To deal with these issues of distinguishing and delineating tumor regions and peripheral tissues, this task is accomplished in two steps: a cascade region-based convolutional neural network (R-CNN) with a refined head is trained to locate the bounding boxes that contain tumors, and a phase-sensitive noise filtering is introduced to refine the following segmentation of tumor regions conducted by a level-set-based framework. The results of tumor detection show the adjacent tumors are successfully separated by the improved cascaded R-CNN. The accuracy of tumor segmentation is also improved by our proposed method. 26 cases of multi-phase CT images were used to validate our proposed method for the segmentation of liver tumors. The average precision and recall rates for tumor detection are 76.8% and 84.4%, respectively. The intersection over union, true positive rate, and false positive rate for tumor segmentation are 72.7%, 76.2%, and 4.75%, respectively.九州工業大学博士学位論文 学位記番号: 工博甲第546号 学位授与年月日: 令和4年3月25日1 Introduction|2 Literature Review|3 Statistical Shape Model Building|4 Multi-organ Segmentation|5 Liver Tumors Segmentation|6 Summary and Outlook九州工業大学令和3年

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    Pan European Voice Conference - PEVOC 11

    Get PDF
    The Pan European VOice Conference (PEVOC) was born in 1995 and therefore in 2015 it celebrates the 20th anniversary of its establishment: an important milestone that clearly expresses the strength and interest of the scientific community for the topics of this conference. The most significant themes of PEVOC are singing pedagogy and art, but also occupational voice disorders, neurology, rehabilitation, image and video analysis. PEVOC takes place in different European cities every two years (www.pevoc.org). The PEVOC 11 conference includes a symposium of the Collegium Medicorum Theatri (www.comet collegium.com

    Computer aided diagnosis system for breast cancer using deep learning.

    Get PDF
    The recent rise of big data technology surrounding the electronic systems and developed toolkits gave birth to new promises for Artificial Intelligence (AI). With the continuous use of data-centric systems and machines in our lives, such as social media, surveys, emails, reports, etc., there is no doubt that data has gained the center of attention by scientists and motivated them to provide more decision-making and operational support systems across multiple domains. With the recent breakthroughs in artificial intelligence, the use of machine learning and deep learning models have achieved remarkable advances in computer vision, ecommerce, cybersecurity, and healthcare. Particularly, numerous applications provided efficient solutions to assist radiologists and doctors for medical imaging analysis, which has remained the essence of the visual representation that is used to construct the final observation and diagnosis. Medical research in cancerology and oncology has been recently blended with the knowledge gained from computer engineering and data science experts. In this context, an automatic assistance or commonly known as Computer-aided Diagnosis (CAD) system has become a popular area of research and development in the last decades. As a result, the CAD systems have been developed using multidisciplinary knowledge and expertise and they have been used to analyze the patient information to assist clinicians and practitioners in their decision-making process. Treating and preventing cancer remains a crucial task that radiologists and oncologists face every day to detect and investigate abnormal tumors. Therefore, a CAD system could be developed to provide decision support for many applications in the cancer patient care processes, such as lesion detection, characterization, cancer staging, tumors assessment, recurrence, and prognosis prediction. Breast cancer has been considered one of the common types of cancers in females across the world. It was also considered the leading cause of mortality among women, and it has been increased drastically every year. Early detection and diagnosis of abnormalities in screened breasts has been acknowledged as the optimal solution to examine the risk of developing breast cancer and thus reduce the increasing mortality rate. Accordingly, this dissertation proposes a new state-of-the-art CAD system for breast cancer diagnosis that is based on deep learning technology and cutting-edge computer vision techniques. Mammography screening has been recognized as the most effective tool to early detect breast lesions for reducing the mortality rate. It helps reveal abnormalities in the breast such as Mass lesion, Architectural Distortion, Microcalcification. With the number of daily patients that were screened is continuously increasing, having a second reading tool or assistance system could leverage the process of breast cancer diagnosis. Mammograms could be obtained using different modalities such as X-ray scanner and Full-Field Digital mammography (FFDM) system. The quality of the mammograms, the characteristics of the breast (i.e., density, size) or/and the tumors (i.e., location, size, shape) could affect the final diagnosis. Therefore, radiologists could miss the lesions and consequently they could generate false detection and diagnosis. Therefore, this work was motivated to improve the reading of mammograms in order to increase the accuracy of the challenging tasks. The efforts presented in this work consists of new design and implementation of neural network models for a fully integrated CAD system dedicated to breast cancer diagnosis. The approach is designed to automatically detect and identify breast lesions from the entire mammograms at a first step using fusion models’ methodology. Then, the second step only focuses on the Mass lesions and thus the proposed system should segment the detected bounding boxes of the Mass lesions to mask their background. A new neural network architecture for mass segmentation was suggested that was integrated with a new data enhancement and augmentation technique. Finally, a third stage was conducted using a stacked ensemble of neural networks for classifying and diagnosing the pathology (i.e., malignant, or benign), the Breast Imaging Reporting and Data System (BI-RADS) assessment score (i.e., from 2 to 6), or/and the shape (i.e., round, oval, lobulated, irregular) of the segmented breast lesions. Another contribution was achieved by applying the first stage of the CAD system for a retrospective analysis and comparison of the model on Prior mammograms of a private dataset. The work was conducted by joining the learning of the detection and classification model with the image-to-image mapping between Prior and Current screening views. Each step presented in the CAD system was evaluated and tested on public and private datasets and consequently the results have been fairly compared with benchmark mammography datasets. The integrated framework for the CAD system was also tested for deployment and showcase. The performance of the CAD system for the detection and identification of breast masses reached an overall accuracy of 97%. The segmentation of breast masses was evaluated together with the previous stage and the approach achieved an overall performance of 92%. Finally, the classification and diagnosis step that defines the outcome of the CAD system reached an overall pathology classification accuracy of 96%, a BIRADS categorization accuracy of 93%, and a shape classification accuracy of 90%. Results given in this dissertation indicate that our suggested integrated framework might surpass the current deep learning approaches by using all the proposed automated steps. Limitations of the proposed work could occur on the long training time of the different methods which is due to the high computation of the developed neural networks that have a huge number of the trainable parameters. Future works can include new orientations of the methodologies by combining different mammography datasets and improving the long training of deep learning models. Moreover, motivations could upgrade the CAD system by using annotated datasets to integrate more breast cancer lesions such as Calcification and Architectural distortion. The proposed framework was first developed to help detect and identify suspicious breast lesions in X-ray mammograms. Next, the work focused only on Mass lesions and segment the detected ROIs to remove the tumor’s background and highlight the contours, the texture, and the shape of the lesions. Finally, the diagnostic decision was predicted to classify the pathology of the lesions and investigate other characteristics such as the tumors’ grading assessment and type of the shape. The dissertation presented a CAD system to assist doctors and experts to identify the risk of breast cancer presence. Overall, the proposed CAD method incorporates the advances of image processing, deep learning, and image-to-image translation for a biomedical application

    Zuverlässigkeit des quantitativen Biomarkers Ktrans in der dynamischen, kontrastmittelverstärkten Magnetresonanztomographie von Bronchialkarzinomen

    Get PDF
    Ziel dieser Studie war die Evaluation der Zuverlässigkeit der DCE-MR-Bildgebung in Bronchialkarzinomen. In dieser vom IRB (Institutional review board) genehmigten monozentrischen Studie wurden 40 Patienten mit NSCLC mit bis zu 5 aufeinanderfolgenden DCE-MRT-Untersuchungen eingeschlossen. Alle DCE-MRT-Untersuchungen wurden mit einem 3.0T-MRT-System durchgeführt. Die Volumen-Transfer-Konstante Ktrans wurde von 3 Untersuchern unterschiedlicher Erfahrung unter Verwendung des Zwei-Kompartiment-Tofts-Modells bewertet. Die Inter- und Intrareader-Reliabilität wurde mittels wCV, ICC und deren 95%-Konfidenzintervallen berechnet. Insgesamt wurden 107 thorakale Läsionen analysiert, einschließlich vom primären Lungenkarzinom, intrapulmonalen Metastasen (n = 91) und extrapulmonalen Metastasen (n = 16). Ktrans zeigte im Gesamtdurchschnitt eine mäßige bis gute Interrater-Reliabilität (ICC 0,716-0.841; CV 30,3-38,4%). Ktrans in Lungenläsionen ≥3 cm zeigte eine gute bis ausgezeichnete Reliabilität (ICC 0,773-0,907; CV 23,0-29,4%) im Vergleich zu Lungenläsionen <3 cm mit einer mäßigen bis guten Reliabilität (ICC 0.710-0.889; CV 31.6-48.7%). Ktrans in intrapulmonalen Läsionen zeigte eine gute Reliabilität (ICC 0,761-0,873; CV 28,9-37,5%) im Vergleich zu extrapulmonalen Läsionen mit einer schlechten bis mäßigen Reliabilität (ICC 0,018-0,680; CV 28,1-51,8%). Analog zur Interrater-Reliabilität war die Intrarater-Übereinstimmung im Gesamtdurchschnitt moderat bis gut (ICC 0,607-0,795; CV 24,6-30,4%). Die Test-Retest-Reliabilität, gemessen in einem Patienten wies einen variablen ICC auf von schlecht bis exzellent reichend (ICC 0,271-0,989; wCV 8,5-10,2%) Die DCE-MRT bietet mit der Volumen-Transfer-Konstante Ktrans einen zuverlässigen quantitativen Biomarker für ein frühes Therapie-Monitoring in Lungentumoren, jedoch mit etwas erhöhten Variabilitätskoeffizienten von 48,7% über dem von der QIBA empfohlenen Höchstwert von 20%

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Localisation in 3D Images Using Cross-features Correlation Learning

    Get PDF
    Object detection and segmentation have evolved drastically over the past two decades thanks to the continuous advancement in the field of deep learning. Substantial research efforts have been dedicated towards integrating object detection techniques into a wide range of real-world prob-lems. Most existing methods take advantage of the successful application and representational ability of convolutional neural networks (CNNs). Generally, these methods target mainstream applications that are typically based on 2D imaging scenarios. Additionally, driven by the strong correlation between the quality of the feature embedding and the performance in CNNs, most works focus on design characteristics of CNNs, e.g., depth and width, to enhance their modelling capacity and discriminative ability. Limited research was directed towards exploiting feature-level dependencies, which can be feasibly used to enhance the performance of CNNs. More-over, directly adopting such approaches into more complex imaging domains that target data of higher dimensions (e.g., 3D multi-modal and volumetric images) is not straightforwardly appli-cable due to the different nature and complexity of the problem. In this thesis, we explore the possibility of incorporating feature-level correspondence and correlations into object detection and segmentation contexts that target the localisation of 3D objects from 3D multi-modal and volumetric image data. Accordingly, we first explore the detection problem of 3D solar active regions in multi-spectral solar imagery where different imaging bands correspond to different 2D layers (altitudes) in the 3D solar atmosphere.We propose a joint analysis approach in which information from different imaging bands is first individually analysed using band-specific network branches to extract inter-band features that are then dynamically cross-integrated and jointly analysed to investigate spatial correspon-dence and co-dependencies between the different bands. The aggregated embeddings are further analysed using band-specific detection network branches to predict separate sets of results (one for each band). Throughout our study, we evaluate different types of feature fusion, using convo-lutional embeddings of different semantic levels, as well as the impact of using different numbers of image bands inputs to perform the joint analysis. We test the proposed approach over different multi-modal datasets (multi-modal solar images and brain MRI) and applications. The proposed joint analysis based framework consistently improves the CNN’s performance when detecting target regions in contrast to single band based baseline methods.We then generalise our cross-band joint analysis detection scheme into the 3D segmentation problem using multi-modal images. We adopt the joint analysis principles into a segmentation framework where cross-band information is dynamically analysed and cross-integrated at vari-ous semantic levels. The proposed segmentation network also takes advantage of band-specific skip connections to maximise the inter-band information and assist the network in capturing fine details using embeddings of different spatial scales. Furthermore, a recursive training strat-egy, based on weak labels (e.g., bounding boxes), is proposed to overcome the difficulty of producing dense labels to train the segmentation network. We evaluate the proposed segmen-tation approach using different feature fusion approaches, over different datasets (multi-modal solar images, brain MRI, and cloud satellite imagery), and using different levels of supervisions. Promising results were achieved and demonstrate an improved performance in contrast to single band based analysis and state-of-the-art segmentation methods.Additionally, we investigate the possibility of explicitly modelling objective driven feature-level correlations, in a localised manner, within 3D medical imaging scenarios (3D CT pul-monary imaging) to enhance the effectiveness of the feature extraction process in CNNs and subsequently the detection performance. Particularly, we present a framework to perform the 3D detection of pulmonary nodules as an ensemble of two stages, candidate proposal and a false positive reduction. We propose a 3D channel attention block in which cross-channel informa-tion is incorporated to infer channel-wise feature importance with respect to the target objective. Unlike common attention approaches that rely on heavy dimensionality reduction and computa-tionally expensive multi-layer perceptron networks, the proposed approach utilises fully convo-lutional networks to allow directly exploiting rich 3D descriptors and performing the attention in an efficient manner. We also propose a fully convolutional 3D spatial attention approach that elevates cross-sectional information to infer spatial attention. We demonstrate the effectiveness of the proposed attention approaches against a number of popular channel and spatial attention mechanisms. Furthermore, for the False positive reduction stage, in addition to attention, we adopt a joint analysis based approach that takes into account the variable nodule morphology by aggregating spatial information from different contextual levels. We also propose a Zoom-in convolutional path that incorporates semantic information of different spatial scales to assist the network in capturing fine details. The proposed detection approach demonstrates considerable gains in performance in contrast to state-of-the-art lung nodule detection methods.We further explore the possibility of incorporating long-range dependencies between arbi-trary positions in the input features using Transformer networks to infer self-attention, in the context of 3D pulmonary nodule detection, in contrast to localised (convolutional based) atten-tion . We present a hybrid 3D detection approach that takes advantage of both, the Transformers ability in modelling global context and correlations and the spatial representational characteris-tics of convolutional neural networks, providing complementary information and subsequently improving the discriminative ability of the detection model. We propose two hybrid Transformer CNN variants where we investigate the impact of exploiting a deeper Transformer design –in which more Transformer layers and trainable parameters are incorporated– is used along with high-level convolutional feature inputs of a single spatial resolution, in contrast to a shallower Transformer design –of less Transformer layers and trainable parameters– while exploiting con-volutional embeddings of different semantic levels and relatively higher resolution.Extensive quantitative and qualitative analyses are presented for the proposed methods in this thesis and demonstrate the feasibility of exploiting feature-level relations, either implicitly or explicitly, in different detection and segmentation problems

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare
    corecore