69,844 research outputs found

    An integration of partial evaluation in a generic abstract interpretation framework

    Get PDF
    Information generated by abstract interpreters has long been used to perform program specialization. Additionally, if the abstract interpreter generates a multivariant analysis, it is also possible to perform mĂșltiple specialization. Information about valĂșes of variables is propagated by simulating program execution and performing fixpoint computations for recursive calis. In contrast, traditional partial evaluators (mainly) use unfolding for both propagating valĂșes of variables and transforming the program. It is known that abstract interpretation is a better technique for propagating success valĂșes than unfolding. However, the program transformations induced by unfolding may lead to important optimizations which are not directly achievable in the existing frameworks for mĂșltiple specialization based on abstract interpretation. The aim of this work is to devise a specialization framework which integrates the better information propagation of abstract interpretation with the powerful program transformations performed by partial evaluation, and which can be implemented via small modifications to existing generic abstract interpreters. With this aim, we will relate top-down abstract interpretation with traditional concepts in partial evaluation and sketch how the sophisticated techniques developed for controlling partial evaluation can be adapted to the proposed specialization framework. We conclude that there can be both practical and conceptual advantages in the proposed integration of partial evaluation and abstract interpretation

    Transient Analysis of High-Speed Channels via Newton-GMRES Waveform Relaxation

    Get PDF
    This paper presents a technique for the numerical simulation of coupled high-speed channels terminated by arbitrary nonlinear drivers and receivers. The method builds on a number of existing techniques. A Delayed-Rational Macromodel is used to describe the channel in compact form, and a general Waveform Relaxation framework is used to cast the solution as an iterative process that refines initial estimates of transient scattering waves at the channel ports. Since a plain Waveform Relaxation approach is not able to guarantee convergence, we turn to a more general class of nonlinear algebraic solvers based on a combination of the Newton method with a Generalized Minimal Residual iteration, where the Waveform Relaxation equations act as a preconditioner. The convergence of this scheme can be proved in the general case. Numerical examples show that very few iterations are indeed required even for strongly nonlinear termination

    Using global analysis, partial specifications, and an extensible assertion language for program validation and debugging

    Get PDF
    We discuss a framework for the application of abstract interpretation as an aid during program development, rather than in the more traditional application of program optimization. Program validation and detection of errors is first performed statically by comparing (partial) specifications written in terms of assertions against information obtained from (global) static analysis of the program. The results of this process are expressed in the user assertion language. Assertions (or parts of assertions) which cannot be checked statically are translated into run-time tests. The framework allows the use of assertions to be optional. It also allows using very general properties in assertions, beyond the predefined set understandable by the static analyzer and including properties defined by user programs. We also report briefly on an implementation of the framework. The resulting tool generates and checks assertions for Prolog, CLP(R), and CHIP/CLP(fd) programs, and integrates compile-time and run-time checking in a uniform way. The tool allows using properties such as types, modes, non-failure, determinacy, and computational cost, and can treat modules separately, performing incremental analysis

    Fast Offline Partial Evaluation of Logic Programs

    Full text link
    One of the most important challenges in partial evaluation is the design of automatic methods for ensuring the termination of the process. In this work, we introduce sufficient conditions for the strong (i.e., independent of a computation rule) termination and quasitermination of logic programs which rely on the construction of size-change graphs. We then present a fast binding-time analysis that takes the output of the termination analysis and annotates logic programs so that partial evaluation terminates. In contrast to previous approaches, the new binding-time analysis is conceptually simpler and considerably faster, scaling to medium-sized or even large examples. © 2014 Elsevier Inc. All rights reserved.This work has been partially supported by the Spanish Ministerio de Ciencia e Innovacion under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana under grant PROMETEO/2011/052.Leuschel, M.; Vidal Oriola, GF. (2014). Fast Offline Partial Evaluation of Logic Programs. Information and Computation. 235:70-97. https://doi.org/10.1016/j.ic.2014.01.005S709723

    An Improved Split-Step Wavelet Transform Method for Anomalous Radio Wave Propagation Modelling

    Get PDF
    Anomalous tropospheric propagation caused by ducting phenomenon is a major problem in wireless communication. Thus, it is important to study the behavior of radio wave propagation in tropospheric ducts. The Parabolic Wave Equation (PWE) method is considered most reliable to model anomalous radio wave propagation. In this work, an improved Split Step Wavelet transform Method (SSWM) is presented to solve PWE for the modeling of tropospheric propagation over finite and infinite conductive surfaces. A large number of numerical experiments are carried out to validate the performance of the proposed algorithm. Developed algorithm is compared with previously published techniques; Wavelet Galerkin Method (WGM) and Split-Step Fourier transform Method (SSFM). A very good agreement is found between SSWM and published techniques. It is also observed that the proposed algorithm is about 18 times faster than WGM and provide more details of propagation effects as compared to SSFM

    Review of recent research towards power cable life cycle management

    Get PDF
    Power cables are integral to modern urban power transmission and distribution systems. For power cable asset managers worldwide, a major challenge is how to manage effectively the expensive and vast network of cables, many of which are approaching, or have past, their design life. This study provides an in-depth review of recent research and development in cable failure analysis, condition monitoring and diagnosis, life assessment methods, fault location, and optimisation of maintenance and replacement strategies. These topics are essential to cable life cycle management (LCM), which aims to maximise the operational value of cable assets and is now being implemented in many power utility companies. The review expands on material presented at the 2015 JiCable conference and incorporates other recent publications. The review concludes that the full potential of cable condition monitoring, condition and life assessment has not fully realised. It is proposed that a combination of physics-based life modelling and statistical approaches, giving consideration to practical condition monitoring results and insulation response to in-service stress factors and short term stresses, such as water ingress, mechanical damage and imperfections left from manufacturing and installation processes, will be key to success in improved LCM of the vast amount of cable assets around the world

    Distributed-memory large deformation diffeomorphic 3D image registration

    Full text link
    We present a parallel distributed-memory algorithm for large deformation diffeomorphic registration of volumetric images that produces large isochoric deformations (locally volume preserving). Image registration is a key technology in medical image analysis. Our algorithm uses a partial differential equation constrained optimal control formulation. Finding the optimal deformation map requires the solution of a highly nonlinear problem that involves pseudo-differential operators, biharmonic operators, and pure advection operators both forward and back- ward in time. A key issue is the time to solution, which poses the demand for efficient optimization methods as well as an effective utilization of high performance computing resources. To address this problem we use a preconditioned, inexact, Gauss-Newton- Krylov solver. Our algorithm integrates several components: a spectral discretization in space, a semi-Lagrangian formulation in time, analytic adjoints, different regularization functionals (including volume-preserving ones), a spectral preconditioner, a highly optimized distributed Fast Fourier Transform, and a cubic interpolation scheme for the semi-Lagrangian time-stepping. We demonstrate the scalability of our algorithm on images with resolution of up to 102431024^3 on the "Maverick" and "Stampede" systems at the Texas Advanced Computing Center (TACC). The critical problem in the medical imaging application domain is strong scaling, that is, solving registration problems of a moderate size of 2563256^3---a typical resolution for medical images. We are able to solve the registration problem for images of this size in less than five seconds on 64 x86 nodes of TACC's "Maverick" system.Comment: accepted for publication at SC16 in Salt Lake City, Utah, USA; November 201
    • 

    corecore