2,512 research outputs found

    Multi-stage Ensemble-learning-based Model Fusion for Surface Ozone Simulations: A Focus on CMIP6 Models

    Get PDF
    Accurately simulating the geographical distribution and temporal variability of global surface ozone has long been one of the principal components of chemistry-climate modelling. However, the simulation outcomes have been reported to vary significantly as a result of the complex mixture of uncertain factors that control the tropospheric ozone budget. Settling the cross-model discrepancies to achieve higher accuracy predictions of surface ozone is thus a task of priority, and methods that overcome structural biases in models going beyond naïve averaging of model simulations are urgently required. Building on the Coupled Model Intercomparison Project Phase 6 (CMIP6), we have transplanted a conventional ensemble learning approach, and also constructed an innovative 2-stage enhanced space-time Bayesian neural network to fuse an ensemble of 57 simulations together with a prescribed ozone dataset, both of which have realised outstanding performances (R2 > 0.95, RMSE < 2.12 ppbv). The conventional ensemble learning approach is computationally cheaper and results in higher overall performance, but at the expense of oceanic ozone being overestimated and the learning process being uninterpretable. The Bayesian approach performs better in spatial generalisation and enables perceivable interpretability, but induces heavier computational burdens. Both of these multi-stage machine learning-based approaches provide frameworks for improving the fidelity of composition-climate model outputs for uses in future impact studies

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references
    • …
    corecore