154 research outputs found

    Complex-valued Retrievals From Noisy Images Using Diffusion Models

    Full text link
    In diverse microscopy modalities, sensors measure only real-valued intensities. Additionally, the sensor readouts are affected by Poissonian-distributed photon noise. Traditional restoration algorithms typically aim to minimize the mean squared error (MSE) between the original and recovered images. This often leads to blurry outcomes with poor perceptual quality. Recently, deep diffusion models (DDMs) have proven to be highly capable of sampling images from the a-posteriori probability of the sought variables, resulting in visually pleasing high-quality images. These models have mostly been suggested for real-valued images suffering from Gaussian noise. In this study, we generalize annealed Langevin Dynamics, a type of DDM, to tackle the fundamental challenges in optical imaging of complex-valued objects (and real images) affected by Poisson noise. We apply our algorithm to various optical scenarios, such as Fourier Ptychography, Phase Retrieval, and Poisson denoising. Our algorithm is evaluated on simulations and biological empirical data.Comment: 11 pages, 7figure

    Blind Image Denoising using Supervised and Unsupervised Learning

    Get PDF
    Image denoising is an important problem in image processing and computer vision. In real-world applications, denoising is often a pre-processing step (so-called low-level vision task) before image segmentation, object detection, and recognition at higher levels. Traditional image denoising algorithms often make idealistic assumptions with the noise (e.g., additive white Gaussian or Poisson). However, the noise in the real-world images such as high-ISO photos and microscopic fluorescence images are more complex. Accordingly, the performance of those traditional approaches degrades rapidly on real-world data. Such blind image denoising has remained an open problem in the literature. In this project, we report two competing approaches toward blind image denoising: supervised and unsupervised learning. We report the principles, performance, differences, merits, and technical potential of a few blind denoising algorithms. Supervised learning is a regression model like CNN with a large number of pairs of corrupted images and clean images. This feed-forward convolution neural network separates noise from the image. The reason for using CNN is its deep architecture for exploiting image characteristics, possible parallel computation with modern powerful GPU’s and advances in regularization and learning methods to train. The integration of residual learning and batch normalization is effective in speeding up the training and improving the denoising performance. Here we apply basic statistical reasoning to signaling reconstruction to map corrupted observations to clean targets Recently, few deep learning algorithms have been investigated that do not require ground truth training images. Noise2Noise is an unsupervised training method created for various applications including denoising with Gaussian, Poisson noise. In the N2N model, we observe that we can often learn to turn bad images to good images just by looking at bad images. An experimental study is conducted on practical properties of noisy-target training at performance levels close to using the clean target data. Further, Noise2Void(N2V) is a self-supervised method that takes one step further. This is method does not require clean image data nor noisy image data for training. It is directly trained on the current image that is to be denoised where other methods cannot do it. This is useful for datasets where we cannot find either a noisy dataset or a pair of clean images for training i.e., biomedical image data

    Image Denoising using Attention-Residual Convolutional Neural Networks

    Full text link
    During the image acquisition process, noise is usually added to the data mainly due to physical limitations of the acquisition sensor, and also regarding imprecisions during the data transmission and manipulation. In that sense, the resultant image needs to be processed to attenuate its noise without losing details. Non-learning-based strategies such as filter-based and noise prior modeling have been adopted to solve the image denoising problem. Nowadays, learning-based denoising techniques showed to be much more effective and flexible approaches, such as Residual Convolutional Neural Networks. Here, we propose a new learning-based non-blind denoising technique named Attention Residual Convolutional Neural Network (ARCNN), and its extension to blind denoising named Flexible Attention Residual Convolutional Neural Network (FARCNN). The proposed methods try to learn the underlying noise expectation using an Attention-Residual mechanism. Experiments on public datasets corrupted by different levels of Gaussian and Poisson noise support the effectiveness of the proposed approaches against some state-of-the-art image denoising methods. ARCNN achieved an overall average PSNR results of around 0.44dB and 0.96dB for Gaussian and Poisson denoising, respectively FARCNN presented very consistent results, even with slightly worsen performance compared to ARCNN.Comment: Published in: 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI
    • …
    corecore