1,728 research outputs found

    Oriented Point Sampling for Plane Detection in Unorganized Point Clouds

    Full text link
    Plane detection in 3D point clouds is a crucial pre-processing step for applications such as point cloud segmentation, semantic mapping and SLAM. In contrast to many recent plane detection methods that are only applicable on organized point clouds, our work is targeted to unorganized point clouds that do not permit a 2D parametrization. We compare three methods for detecting planes in point clouds efficiently. One is a novel method proposed in this paper that generates plane hypotheses by sampling from a set of points with estimated normals. We named this method Oriented Point Sampling (OPS) to contrast with more conventional techniques that require the sampling of three unoriented points to generate plane hypotheses. We also implemented an efficient plane detection method based on local sampling of three unoriented points and compared it with OPS and the 3D-KHT algorithm, which is based on octrees, on the detection of planes on 10,000 point clouds from the SUN RGB-D dataset.Comment: 7 pages, 3 figures, 2019 IEEE International Conference on Robotics and Automation (Accepted

    Local Color Contrastive Descriptor for Image Classification

    Full text link
    Image representation and classification are two fundamental tasks towards multimedia content retrieval and understanding. The idea that shape and texture information (e.g. edge or orientation) are the key features for visual representation is ingrained and dominated in current multimedia and computer vision communities. A number of low-level features have been proposed by computing local gradients (e.g. SIFT, LBP and HOG), and have achieved great successes on numerous multimedia applications. In this paper, we present a simple yet efficient local descriptor for image classification, referred as Local Color Contrastive Descriptor (LCCD), by leveraging the neural mechanisms of color contrast. The idea originates from the observation in neural science that color and shape information are linked inextricably in visual cortical processing. The color contrast yields key information for visual color perception and provides strong linkage between color and shape. We propose a novel contrastive mechanism to compute the color contrast in both spatial location and multiple channels. The color contrast is computed by measuring \emph{f}-divergence between the color distributions of two regions. Our descriptor enriches local image representation with both color and contrast information. We verified experimentally that it can compensate strongly for the shape based descriptor (e.g. SIFT), while keeping computationally simple. Extensive experimental results on image classification show that our descriptor improves the performance of SIFT substantially by combinations, and achieves the state-of-the-art performance on three challenging benchmark datasets. It improves recent Deep Learning model (DeCAF) [1] largely from the accuracy of 40.94% to 49.68% in the large scale SUN397 database. Codes for the LCCD will be available

    DAP3D-Net: Where, What and How Actions Occur in Videos?

    Full text link
    Action parsing in videos with complex scenes is an interesting but challenging task in computer vision. In this paper, we propose a generic 3D convolutional neural network in a multi-task learning manner for effective Deep Action Parsing (DAP3D-Net) in videos. Particularly, in the training phase, action localization, classification and attributes learning can be jointly optimized on our appearancemotion data via DAP3D-Net. For an upcoming test video, we can describe each individual action in the video simultaneously as: Where the action occurs, What the action is and How the action is performed. To well demonstrate the effectiveness of the proposed DAP3D-Net, we also contribute a new Numerous-category Aligned Synthetic Action dataset, i.e., NASA, which consists of 200; 000 action clips of more than 300 categories and with 33 pre-defined action attributes in two hierarchical levels (i.e., low-level attributes of basic body part movements and high-level attributes related to action motion). We learn DAP3D-Net using the NASA dataset and then evaluate it on our collected Human Action Understanding (HAU) dataset. Experimental results show that our approach can accurately localize, categorize and describe multiple actions in realistic videos

    Large-Scale Mapping of Human Activity using Geo-Tagged Videos

    Full text link
    This paper is the first work to perform spatio-temporal mapping of human activity using the visual content of geo-tagged videos. We utilize a recent deep-learning based video analysis framework, termed hidden two-stream networks, to recognize a range of activities in YouTube videos. This framework is efficient and can run in real time or faster which is important for recognizing events as they occur in streaming video or for reducing latency in analyzing already captured video. This is, in turn, important for using video in smart-city applications. We perform a series of experiments to show our approach is able to accurately map activities both spatially and temporally. We also demonstrate the advantages of using the visual content over the tags/titles.Comment: Accepted at ACM SIGSPATIAL 201

    Conceptual spatial representations for indoor mobile robots

    Get PDF
    We present an approach for creating conceptual representations of human-made indoor environments using mobile robots. The concepts refer to spatial and functional properties of typical indoor environments. Following ļ¬ndings in cognitive psychology, our model is composed of layers representing maps at diļ¬€erent levels of abstraction. The complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition. The system also incorporates a linguistic framework that actively supports the map acquisition process, and which is used for situated dialogue. Finally, we discuss the capabilities of the integrated system

    Cross-Modal Attentional Context Learning for RGB-D Object Detection

    Full text link
    Recognizing objects from simultaneously sensed photometric (RGB) and depth channels is a fundamental yet practical problem in many machine vision applications such as robot grasping and autonomous driving. In this paper, we address this problem by developing a Cross-Modal Attentional Context (CMAC) learning framework, which enables the full exploitation of the context information from both RGB and depth data. Compared to existing RGB-D object detection frameworks, our approach has several appealing properties. First, it consists of an attention-based global context model for exploiting adaptive contextual information and incorporating this information into a region-based CNN (e.g., Fast RCNN) framework to achieve improved object detection performance. Second, our CMAC framework further contains a fine-grained object part attention module to harness multiple discriminative object parts inside each possible object region for superior local feature representation. While greatly improving the accuracy of RGB-D object detection, the effective cross-modal information fusion as well as attentional context modeling in our proposed model provide an interpretable visualization scheme. Experimental results demonstrate that the proposed method significantly improves upon the state of the art on all public benchmarks.Comment: Accept as a regular paper to IEEE Transactions on Image Processin

    Mini-Unmanned Aerial Vehicle-Based Remote Sensing: Techniques, Applications, and Prospects

    Full text link
    The past few decades have witnessed the great progress of unmanned aircraft vehicles (UAVs) in civilian fields, especially in photogrammetry and remote sensing. In contrast with the platforms of manned aircraft and satellite, the UAV platform holds many promising characteristics: flexibility, efficiency, high-spatial/temporal resolution, low cost, easy operation, etc., which make it an effective complement to other remote-sensing platforms and a cost-effective means for remote sensing. Considering the popularity and expansion of UAV-based remote sensing in recent years, this paper provides a systematic survey on the recent advances and future prospectives of UAVs in the remote-sensing community. Specifically, the main challenges and key technologies of remote-sensing data processing based on UAVs are discussed and summarized firstly. Then, we provide an overview of the widespread applications of UAVs in remote sensing. Finally, some prospects for future work are discussed. We hope this paper will provide remote-sensing researchers an overall picture of recent UAV-based remote sensing developments and help guide the further research on this topic

    Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review

    Full text link
    Recently, the advancement of deep learning in discriminative feature learning from 3D LiDAR data has led to rapid development in the field of autonomous driving. However, automated processing uneven, unstructured, noisy, and massive 3D point clouds is a challenging and tedious task. In this paper, we provide a systematic review of existing compelling deep learning architectures applied in LiDAR point clouds, detailing for specific tasks in autonomous driving such as segmentation, detection, and classification. Although several published research papers focus on specific topics in computer vision for autonomous vehicles, to date, no general survey on deep learning applied in LiDAR point clouds for autonomous vehicles exists. Thus, the goal of this paper is to narrow the gap in this topic. More than 140 key contributions in the recent five years are summarized in this survey, including the milestone 3D deep architectures, the remarkable deep learning applications in 3D semantic segmentation, object detection, and classification; specific datasets, evaluation metrics, and the state of the art performance. Finally, we conclude the remaining challenges and future researches.Comment: 21 pages, submitted to IEEE Transactions on Neural Networks and Learning System

    Video Object Detection with an Aligned Spatial-Temporal Memory

    Full text link
    We introduce Spatial-Temporal Memory Networks for video object detection. At its core, a novel Spatial-Temporal Memory module (STMM) serves as the recurrent computation unit to model long-term temporal appearance and motion dynamics. The STMM's design enables full integration of pretrained backbone CNN weights, which we find to be critical for accurate detection. Furthermore, in order to tackle object motion in videos, we propose a novel MatchTrans module to align the spatial-temporal memory from frame to frame. Our method produces state-of-the-art results on the benchmark ImageNet VID dataset, and our ablative studies clearly demonstrate the contribution of our different design choices. We release our code and models at http://fanyix.cs.ucdavis.edu/project/stmn/project.html

    EdgeLoc: An Edge-IoT Framework for Robust Indoor Localization Using Capsule Networks

    Full text link
    With the unprecedented demand for location-based services in indoor scenarios, wireless indoor localization has become essential for mobile users. While GPS is not available at indoor spaces, WiFi RSS fingerprinting has become popular with its ubiquitous accessibility. However, it is challenging to achieve robust and efficient indoor localization with two major challenges. First, the localization accuracy can be degraded by the random signal fluctuations, which would influence conventional localization algorithms that simply learn handcrafted features from raw fingerprint data. Second, mobile users are sensitive to the localization delay, but conventional indoor localization algorithms are computation-intensive and time-consuming. In this paper, we propose EdgeLoc, an edge-IoT framework for efficient and robust indoor localization using capsule networks. We develop a deep learning model with the CapsNet to efficiently extract hierarchical information from WiFi fingerprint data, thereby significantly improving the localization accuracy. Moreover, we implement an edge-computing prototype system to achieve a nearly real-time localization process, by enabling mobile users with the deep-learning model that has been well-trained by the edge server. We conduct a real-world field experimental study with over 33,600 data points and an extensive synthetic experiment with the open dataset, and the experimental results validate the effectiveness of EdgeLoc. The best trade-off of the EdgeLoc system achieves 98.5% localization accuracy within an average positioning time of only 2.31 ms in the field experiment.Comment: 11 pages, 12 figure
    • ā€¦
    corecore