499 research outputs found

    Target before Shooting: Accurate Anomaly Detection and Localization under One Millisecond via Cascade Patch Retrieval

    Full text link
    In this work, by re-examining the "matching" nature of Anomaly Detection (AD), we propose a new AD framework that simultaneously enjoys new records of AD accuracy and dramatically high running speed. In this framework, the anomaly detection problem is solved via a cascade patch retrieval procedure that retrieves the nearest neighbors for each test image patch in a coarse-to-fine fashion. Given a test sample, the top-K most similar training images are first selected based on a robust histogram matching process. Secondly, the nearest neighbor of each test patch is retrieved over the similar geometrical locations on those "global nearest neighbors", by using a carefully trained local metric. Finally, the anomaly score of each test image patch is calculated based on the distance to its "local nearest neighbor" and the "non-background" probability. The proposed method is termed "Cascade Patch Retrieval" (CPR) in this work. Different from the conventional patch-matching-based AD algorithms, CPR selects proper "targets" (reference images and locations) before "shooting" (patch-matching). On the well-acknowledged MVTec AD, BTAD and MVTec-3D AD datasets, the proposed algorithm consistently outperforms all the comparing SOTA methods by remarkable margins, measured by various AD metrics. Furthermore, CPR is extremely efficient. It runs at the speed of 113 FPS with the standard setting while its simplified version only requires less than 1 ms to process an image at the cost of a trivial accuracy drop. The code of CPR is available at https://github.com/flyinghu123/CPR.Comment: 13 pages,8 figure

    On-device Scalable Image-based Localization via Prioritized Cascade Search and Fast One-Many RANSAC.

    Get PDF
    We present the design of an entire on-device system for large-scale urban localization using images. The proposed design integrates compact image retrieval and 2D-3D correspondence search to estimate the location in extensive city regions. Our design is GPS agnostic and does not require network connection. In order to overcome the resource constraints of mobile devices, we propose a system design that leverages the scalability advantage of image retrieval and accuracy of 3D model-based localization. Furthermore, we propose a new hashing-based cascade search for fast computation of 2D-3D correspondences. In addition, we propose a new one-many RANSAC for accurate pose estimation. The new one-many RANSAC addresses the challenge of repetitive building structures (e.g. windows, balconies) in urban localization. Extensive experiments demonstrate that our 2D-3D correspondence search achieves state-of-the-art localization accuracy on multiple benchmark datasets. Furthermore, our experiments on a large Google Street View (GSV) image dataset show the potential of large-scale localization entirely on a typical mobile device
    • …
    corecore