474 research outputs found

    An FGO-based Unified Initial Alignment Method of Strapdown Inertial Navigation System

    Full text link
    The initial alignment process can provide an accurate initial attitude of strapdown inertial navigation system. The conventional two-procedure method usually includes coarse and fine alignment processes. Coarse alignment converges fast because of its batch estimating characteristics and the initial attitude does not influence the results. But coarse alignment is low accuracy without considering the IMU's bias. The fine alignment is more accurate by applying a recursive Bayesian filter to estimate the IMU's bias, but the attitude converges slowly as the initial value influence the convergence speed of the recursive filter. Researchers have proposed the unified initial alignment to achieve initial alignment in one procedure, existing unified methods make improvements on the basics of recursive Bayesian filter and those methods are still slow to converge. In this paper, a unified method based on batch estimator FGO (factor graph optimization) is raised, which is converge fast like coarse alignment and accurate than the existing method. We redefine the state and rederivation the state dynamic model first. Then, the optimal attitude and the IMU's bias are estimated simultaneously through FGO. The fast convergence and high accuracy of this method are verified by simulation and physical experiments on a rotation SINS.Comment: 9 pages, Journal Paper

    Generic Multisensor Integration Strategy and Innovative Error Analysis for Integrated Navigation

    Get PDF
    A modern multisensor integrated navigation system applied in most of civilian applications typically consists of GNSS (Global Navigation Satellite System) receivers, IMUs (Inertial Measurement Unit), and/or other sensors, e.g., odometers and cameras. With the increasing availabilities of low-cost sensors, more research and development activities aim to build a cost-effective system without sacrificing navigational performance. Three principal contributions of this dissertation are as follows: i) A multisensor kinematic positioning and navigation system built on Linux Operating System (OS) with Real Time Application Interface (RTAI), York University Multisensor Integrated System (YUMIS), was designed and realized to integrate GNSS receivers, IMUs, and cameras. YUMIS sets a good example of a low-cost yet high-performance multisensor inertial navigation system and lays the ground work in a practical and economic way for the personnel training in following academic researches. ii) A generic multisensor integration strategy (GMIS) was proposed, which features a) the core system model is developed upon the kinematics of a rigid body; b) all sensor measurements are taken as raw measurement in Kalman filter without differentiation. The essential competitive advantages of GMIS over the conventional error-state based strategies are: 1) the influences of the IMU measurement noises on the final navigation solutions are effectively mitigated because of the increased measurement redundancy upon the angular rate and acceleration of a rigid body; 2) The state and measurement vectors in the estimator with GMIS can be easily expanded to fuse multiple inertial sensors and all other types of measurements, e.g., delta positions; 3) one can directly perform error analysis upon both raw sensor data (measurement noise analysis) and virtual zero-mean process noise measurements (process noise analysis) through the corresponding measurement residuals of the individual measurements and the process noise measurements. iii) The a posteriori variance component estimation (VCE) was innovatively accomplished as an advanced analytical tool in the extended Kalman Filter employed by the GMIS, which makes possible the error analysis of the raw IMU measurements for the very first time, together with the individual independent components in the process noise vector

    Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Test report

    Get PDF
    Results of flight tests of the Strapdown Inertial Reference Unit (SIRU) navigation system are presented. The fault tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance. Performance shortcomings are analyzed

    A New Analytic Alignment Method for a SINS

    Get PDF
    Analytic alignment is a type of self-alignment for a Strapdown inertial navigation system (SINS) that is based solely on two non-collinear vectors, which are the gravity and rotational velocity vectors of the Earth at a stationary base on the ground. The attitude of the SINS with respect to the Earth can be obtained directly using the TRIAD algorithm given two vector measurements. For a traditional analytic coarse alignment, all six outputs from the inertial measurement unit (IMU) are used to compute the attitude. In this study, a novel analytic alignment method called selective alignment is presented. This method uses only three outputs of the IMU and a few properties from the remaining outputs such as the sign and the approximate value to calculate the attitude. Simulations and experimental results demonstrate the validity of this method, and the precision of yaw is improved using the selective alignment method compared to the traditional analytic coarse alignment method in the vehicle experiment. The selective alignment principle provides an accurate relationship between the outputs and the attitude of the SINS relative to the Earth for a stationary base, and it is an extension of the TRIAD algorithm. The selective alignment approach has potential uses in applications such as self-alignment, fault detection, and self-calibration

    In-Motion Initial Alignment Method Based on Vector Observation and Truncated Vectorized K-Matrix for SINS

    Get PDF

    Enhanced Subsea Acoustically Aided Inertial Navigation

    Get PDF

    Anti-disturbance fault tolerant initial alignment for inertial navigation system subjected to multiple disturbances

    Get PDF
    Modeling error, stochastic error of inertial sensor, measurement noise and environmental disturbance affect the accuracy of an inertial navigation system (INS). In addition, some unpredictable factors, such as system fault, directly affect the reliability of INSs. This paper proposes a new anti-disturbance fault tolerant alignment approach for a class of INSs sub- jected to multiple disturbances and system faults. Based on modeling and error analysis, stochastic error of inertial sensor, measurement noise, modeling error and environmental disturbance are formulated into different types of disturbances described by a Markov stochastic process, Gaussian noise and a norm-bounded variable, respectively. In order to improve the accuracy and reliability of an INS, an anti-disturbance fault tolerant filter is designed. Then, a mixed dissipative/guarantee cost performance is applied to attenuate the norm-bounded disturbance and to optimize the estimation error. Slack variables and dissipativeness are introduced to reduce the conservatism of the proposed approach. Finally, compared with the unscented Kalman filter (UKF), simulation results for self-alignment of an INS are provided based on experimental data. It can be shown that the proposed method has an enhanced disturbance rejection and attenuation performance with high reliability

    Parameter Identification Method for SINS Initial Alignment under Inertial Frame

    Get PDF
    The performance of a strapdown inertial navigation system (SINS) largely depends on the accuracy and rapidness of the initial alignment. The conventional alignment method with parameter identification has been already applied widely, but it needs to calculate the gyroscope drifts through two-position method; then the time of initial alignment is greatly prolonged. For this issue, a novel self-alignment algorithm by parameter identification method under inertial frame for SINS is proposed in this paper. Firstly, this coarse alignment method using the gravity in the inertial frame as a reference is discussed to overcome the limit of dynamic disturbance on a rocking base and fulfill the requirement for the fine alignment. Secondly, the fine alignment method by parameter identification under inertial frame is formulated. The theoretical analysis results show that the fine alignment model is fully self-aligned with no external reference information and the gyrodrifts can be estimated in real time. The simulation results demonstrate that the proposed method can achieve rapid and highly accurate initial alignment for SINS
    corecore