90 research outputs found

    Sub-cubic Change of Ordering for Gröner Basis: A Probabilistic Approach

    Get PDF
    International audienceThe usual algorithm to solve polynomial systems using Gröbner bases consists of two steps: first computing the DRL Gröbner basis using the F5 algorithm then computing the LEX Gröbner basis using a change of ordering algorithm. When the BĂ©zout bound is reached, the bottleneck of the total solving process is the change of ordering step. For 20 years, thanks to the FGLM algorithm the complexity of change of ordering is known to be cubic in the number of solutions of the system to solve. We show that, in the generic case or up to a generic linear change of variables, the multiplicative structure of the quotient ring can be computed with no arithmetic operation. Moreover, given this multiplicative structure we propose a change of ordering algorithm for Shape Position ideals whose complexity is polynomial in the number of solutions with exponent ω where 2 ≀ ω < 2.3727 is the exponent in the complexity of multiplying two dense matrices. As a consequence, we propose a new Las Vegas algorithm for solving polynomial systems with a finite number of solutions by using Gröbner basis for which the change of ordering step has a sub-cubic (i.e. with exponent ω) complexity and whose total complexity is dominated by the complexity of the F5 algorithm. In practice we obtain significant speedups for various polynomial systems by a factor up to 1500 for specific cases and we are now able to tackle some instances that were intractable

    Solving polynomial systems via symbolic-numeric reduction to geometric involutive form

    Get PDF
    AbstractWe briefly survey several existing methods for solving polynomial systems with inexact coefficients, then introduce our new symbolic-numeric method which is based on the geometric (Jet) theory of partial differential equations. The method is stable and robust. Numerical experiments illustrate the performance of the new method

    On the Complexity of Solving Zero-Dimensional Polynomial Systems via Projection

    Full text link
    Given a zero-dimensional polynomial system consisting of n integer polynomials in n variables, we propose a certified and complete method to compute all complex solutions of the system as well as a corresponding separating linear form l with coefficients of small bit size. For computing l, we need to project the solutions into one dimension along O(n) distinct directions but no further algebraic manipulations. The solutions are then directly reconstructed from the considered projections. The first step is deterministic, whereas the second step uses randomization, thus being Las-Vegas. The theoretical analysis of our approach shows that the overall cost for the two problems considered above is dominated by the cost of carrying out the projections. We also give bounds on the bit complexity of our algorithms that are exclusively stated in terms of the number of variables, the total degree and the bitsize of the input polynomials

    Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences

    Get PDF
    International audienceSakata generalized the Berlekamp -- Massey algorithm to nn dimensions in~1988. The Berlekamp -- Massey -- Sakata (BMS)algorithm can be used for finding a Gröbner basis of a 00-dimensionalideal of relations verified by a table. We investigate this problem usinglinear algebra techniques, with motivations such as accelerating change ofbasis algorithms (FGLM) or improving their complexity.We first define and characterize multidimensional linear recursive sequencesfor 00-dimensional ideals.Under genericity assumptions, we propose a randomized preprocessing of thetable that corresponds to performing a linear change of coordinates on thepolynomials associated with the linear recurrences. This technique thenessentially reduces our problem to using the efficient 11-dimensional Berlekamp -- Massey (BM)algorithm.However, the number of probes to the table in this scheme may be elevated.We thus consider the table in the \emph{black-box} model: we assume probing thetable is expensive and we minimize the number of probes to the table in ourcomplexity model.We produce an FGLM-like algorithm for finding the relations in thetable, which lets us use linear algebra techniques. Under some additionalassumptions, we make this algorithm adaptive and reduce further the numberof table probes.This number can be estimated by counting the number of distinct elements in amulti-Hankel matrix (a multivariate generalization of Hankel matrices); we canrelate this quantity with the \emph{geometry} of the final staircase. Hence,in favorable cases such as convex ones, the complexity is essentially linear inthe size of the output. Finally, when using the \textsc{lex} ordering, we canmake use of fast structured linear algebra similarly to the Hankelinterpretation of Berlekamp -- Massey

    A polyhedral approach to computing border bases

    Full text link
    Border bases can be considered to be the natural extension of Gr\"obner bases that have several advantages. Unfortunately, to date the classical border basis algorithm relies on (degree-compatible) term orderings and implicitly on reduced Gr\"obner bases. We adapt the classical border basis algorithm to allow for calculating border bases for arbitrary degree-compatible order ideals, which is \emph{independent} from term orderings. Moreover, the algorithm also supports calculating degree-compatible order ideals with \emph{preference} on contained elements, even though finding a preferred order ideal is NP-hard. Effectively we retain degree-compatibility only to successively extend our computation degree-by-degree. The adaptation is based on our polyhedral characterization: order ideals that support a border basis correspond one-to-one to integral points of the order ideal polytope. This establishes a crucial connection between the ideal and the combinatorial structure of the associated factor spaces

    A polynomial-division-based algorithm for computing linear recurrence relations

    Get PDF
    International audienceSparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down to computing linear recurrence relations of a sequence with the Berlekamp–Massey algorithm. Likewise, sparse multivariate polynomial interpolation and multidi-mensional cyclic code decoding require guessing linear recurrence relations of a multivariate sequence. Several algorithms solve this problem. The so-called Berlekamp– Massey–Sakata algorithm (1988) uses polynomial additions and shifts by a monomial. The Scalar-FGLM algorithm (2015) relies on linear algebra operations on a multi-Hankel matrix, a multivariate generalization of a Hankel matrix. The Artinian Gorenstein border basis algorithm (2017) uses a Gram-Schmidt process. We propose a new algorithm for computing the Gröbner basis of the ideal of relations of a sequence based solely on multivariate polynomial arithmetic. This algorithm allows us to both revisit the Berlekamp–Massey–Sakata algorithm through the use of polynomial divisions and to completely revise the Scalar-FGLM algorithm without linear algebra operations. A key observation in the design of this algorithm is to work on the mirror of the truncated generating series allowing us to use polynomial arithmetic modulo a monomial ideal. It appears to have some similarities with PadĂ© approximants of this mirror polynomial. Finally, we give a partial solution to the transformation of this algorithm into an adaptive one

    Computational Methods for Computer Vision : Minimal Solvers and Convex Relaxations

    Get PDF
    Robust fitting of geometric models is a core problem in computer vision. The most common approach is to use a hypothesize-and-test framework, such as RANSAC. In these frameworks the model is estimated from as few measurements as possible, which minimizes the risk of selecting corrupted measurements. These estimation problems are called minimal problems, and they can often be formulated as systems of polynomial equations. In this thesis we present new methods for building so-called minimal solvers or polynomial solvers, which are specialized code for solving such systems. On several minimal problems we improve on the state-of-the-art both with respect to numerical stability and execution time.In many computer vision problems low rank matrices naturally occur. The rank can serve as a measure of model complexity and typically a low rank is desired. Optimization problems containing rank penalties or constraints are in general difficult. Recently convex relaxations, such as the nuclear norm, have been used to make these problems tractable. In this thesis we present new convex relaxations for rank-based optimization which avoid drawbacks of previous approaches and provide tighter relaxations. We evaluate our methods on a number of real and synthetic datasets and show state-of-the-art results

    Gröbner Basis over Semigroup Algebras: Algorithms and Applications for Sparse Polynomial Systems

    Get PDF
    International audienceGröbner bases is one the most powerful tools in algorithmic non-linear algebra. Their computation is an intrinsically hard problem with a complexity at least single exponential in the number of variables. However, in most of the cases, the polynomial systems coming from applications have some kind of structure. For example , several problems in computer-aided design, robotics, vision, biology , kinematics, cryptography, and optimization involve sparse systems where the input polynomials have a few non-zero terms. Our approach to exploit sparsity is to embed the systems in a semigroup algebra and to compute Gröbner bases over this algebra. Up to now, the algorithms that follow this approach benefit from the sparsity only in the case where all the polynomials have the same sparsity structure, that is the same Newton polytope. We introduce the first algorithm that overcomes this restriction. Under regularity assumptions, it performs no redundant computations. Further, we extend this algorithm to compute Gröbner basis in the standard algebra and solve sparse polynomials systems over the torus (C∗)n(C^*)^n. The complexity of the algorithm depends on the Newton polytopes
    • 

    corecore