372 research outputs found

    Polygonal Representation of Digital Curves

    Get PDF

    Thinning-free Polygonal Approximation of Thick Digital Curves Using Cellular Envelope

    Get PDF
    Since the inception of successful rasterization of curves and objects in the digital space, several algorithms have been proposed for approximating a given digital curve. All these algorithms, however, resort to thinning as preprocessing before approximating a digital curve with changing thickness. Described in this paper is a novel thinning-free algorithm for polygonal approximation of an arbitrarily thick digital curve, using the concept of "cellular envelope", which is newly introduced in this paper. The cellular envelope, defined as the smallest set of cells containing the given curve, and hence bounded by two tightest (inner and outer) isothetic polygons, is constructed using a combinatorial technique. This envelope, in turn, is analyzed to determine a polygonal approximation of the curve as a sequence of cells using certain attributes of digital straightness. Since a real-world curve=curve-shaped object with varying thickness, unexpected disconnectedness, noisy information, etc., is unsuitable for the existing algorithms on polygonal approximation, the curve is encapsulated by the cellular envelope to enable the polygonal approximation. Owing to the implicit Euclidean-free metrics and combinatorial properties prevailing in the cellular plane, implementation of the proposed algorithm involves primitive integer operations only, leading to fast execution of the algorithm. Experimental results that include output polygons for different values of the approximation parameter corresponding to several real-world digital curves, a couple of measures on the quality of approximation, comparative results related with two other well-referred algorithms, and CPU times, have been presented to demonstrate the elegance and efficacy of the proposed algorithm

    A novel framework for making dominant point detection methods non-parametric

    Get PDF
    Most dominant point detection methods require heuristically chosen control parameters. One of the commonly used control parameter is maximum deviation. This paper uses a theoretical bound of the maximum deviation of pixels obtained by digitization of a line segment for constructing a general framework to make most dominant point detection methods non-parametric. The derived analytical bound of the maximum deviation can be used as a natural bench mark for the line fitting algorithms and thus dominant point detection methods can be made parameter-independent and non-heuristic. Most methods can easily incorporate the bound. This is demonstrated using three categorically different dominant point detection methods. Such non-parametric approach retains the characteristics of the digital curve while providing good fitting performance and compression ratio for all the three methods using a variety of digital, non-digital, and noisy curves

    Polygonal Approximation of Digital Planar Curve Using Novel Significant Measure

    Get PDF
    This chapter presents an iterative smoothing technique for polygonal approximation of digital image boundary. The technique starts with finest initial segmentation points of a curve. The contribution of initially segmented points toward preserving the original shape of the image boundary is determined by computing the significant measure of every initial segmentation point that is sensitive to sharp turns, which may be missed easily when conventional significant measures are used for detecting dominant points. The proposed method differentiates between the situations when a point on the curve between two points on a curve projects directly upon the line segment or beyond this line segment. It not only identifies these situations but also computes its significant contribution for these situations differently. This situation-specific treatment allows preservation of points with high curvature even as revised set of dominant points are derived. Moreover, the technique may find its application in parallel manipulators in detecting target boundary of an image with varying scale. The experimental results show that the proposed technique competes well with the state-of-the-art techniques

    A multiscale approach to decompose a digital curve into meaningful parts

    Get PDF
    International audienceA multi-scale approach is proposed for polygonal repre- sentation of a digital curve by using the notion of blurred seg- ment and a split-and-merge strategy. Its main idea is to de- compose the curve into meaningful parts that are represented by detected dominant points at the appropriate scale. The method uses no threshold and can automatically decompose the curve into meaningful parts

    Parameter-free method for polygonal representation of the noisy curves

    Get PDF
    International audienceWe propose a parameter-free method for the detection of dominant points and polygonal representation of possibly noisy curves. Based on \cite{ND07,NguyenDebled09}, this work aims at a parameter-free method through a multiscale approach. We propose a new evaluation criterion to automatically determine the most appropriate width parameter for each input curve. Thanks to a recent result \cite{FF08} on the decomposition of a curve into a sequence of maximal blurred segments, the complexity of this algorithm is O(nlogn)O(n\log n)

    Review and classification of trajectory summarisation algorithms: From compression to segmentation

    Get PDF
    With the continuous development and cost reduction of positioning and tracking technologies, a large amount of trajectories are being exploited in multiple domains for knowledge extraction. A trajectory is formed by a large number of measurements, where many of them are unnecessary to describe the actual trajectory of the vehicle, or even harmful due to sensor noise. This not only consumes large amounts of memory, but also makes the extracting knowledge process more difficult. Trajectory summarisation techniques can solve this problem, generating a smaller and more manageable representation and even semantic segments. In this comprehensive review, we explain and classify techniques for the summarisation of trajectories according to their search strategy and point evaluation criteria, describing connections with the line simplification problem. We also explain several special concepts in trajectory summarisation problem. Finally, we outline the recent trends and best practices to continue the research in next summarisation algorithms.The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This work was funded by public research projects of Spanish Ministry of Economy and Competitivity (MINECO), reference TEC2017-88048-C2-2-

    Contribuciones sobre métodos óptimos y subóptimos de aproximaciones poligonales de curvas 2-D

    Get PDF
    Esta tesis versa sobre el an álisis de la forma de objetos 2D. En visión articial existen numerosos aspectos de los que se pueden extraer información. Uno de los más usados es la forma o el contorno de esos objetos. Esta característica visual de los objetos nos permite, mediante el procesamiento adecuado, extraer información de los objetos, analizar escenas, etc. No obstante el contorno o silueta de los objetos contiene información redundante. Este exceso de datos que no aporta nuevo conocimiento debe ser eliminado, con el objeto de agilizar el procesamiento posterior o de minimizar el tamaño de la representación de ese contorno, para su almacenamiento o transmisión. Esta reducción de datos debe realizarse sin que se produzca una pérdida de información importante para representación del contorno original. Se puede obtener una versión reducida de un contorno eliminando puntos intermedios y uniendo los puntos restantes mediante segmentos. Esta representación reducida de un contorno se conoce como aproximación poligonal. Estas aproximaciones poligonales de contornos representan, por tanto, una versión comprimida de la información original. El principal uso de las mismas es la reducción del volumen de información necesario para representar el contorno de un objeto. No obstante, en los últimos años estas aproximaciones han sido usadas para el reconocimiento de objetos. Para ello los algoritmos de aproximaci ón poligonal se han usado directamente para la extracci ón de los vectores de caracter ísticas empleados en la fase de aprendizaje. Las contribuciones realizadas por tanto en esta tesis se han centrado en diversos aspectos de las aproximaciones poligonales. En la primera contribución se han mejorado varios algoritmos de aproximaciones poligonales, mediante el uso de una fase de preprocesado que acelera estos algoritmos permitiendo incluso mejorar la calidad de las soluciones en un menor tiempo. En la segunda contribución se ha propuesto un nuevo algoritmo de aproximaciones poligonales que obtiene soluciones optimas en un menor espacio de tiempo que el resto de métodos que aparecen en la literatura. En la tercera contribución se ha propuesto un algoritmo de aproximaciones que es capaz de obtener la solución óptima en pocas iteraciones en la mayor parte de los casos. Por último, se ha propuesto una versi ón mejorada del algoritmo óptimo para obtener aproximaciones poligonales que soluciona otro problema de optimización alternativo.This thesis focus on the analysis of the shape of objects. In computer vision there are several sources from which we can extract information. One of the most important source of information is the shape or contour of objects. This visual characteristic can be used to extract information, analyze the scene, etc. However, the contour of the objects contains redundant information. This redundant data does not add new information and therefore, must be deleted in order to minimize the processing burden and reducing the amount of data to represent that shape. This reduction of data should be done without losing important information to represent the original contour. A reduced version of a contour can be obtained by deleting some points of the contour and linking the remaining points by using line segments. This reduced version of a contour is known as polygonal approximation in the literature. Therefore, these polygonal approximation represent a compressed version of the original information. The main use of polygonal approximations is to reduce the amount of information needed to represent the contour of an object. However, in recent years polygonal approximations have been used to recognize objects. For this purpose, the feature vectors have been extracted from the polygonal approximations. The contributions proposed in this thesis have focused on several aspects of polygonal approximations. The rst contribution has improved several algorithms to obtain polygonal approximations, by adding a new stage of preprocessing which boost the whole method. The quality of the solutions obtained has also been improved and the computation time reduced. The second contribution proposes a novel algorithm which obtains optimal polygonal approximations in a shorter time than the optimal methods found in the literature. The third contribution proposes a new method which may obtain the optimal solution after few iterations in most cases. Finally, an improved version of the optimal polygonal approximation algorithm has been proposed to solve an alternative optimization problem
    corecore