1,476 research outputs found

    Generalized residual vector quantization for large scale data

    Full text link
    Vector quantization is an essential tool for tasks involving large scale data, for example, large scale similarity search, which is crucial for content-based information retrieval and analysis. In this paper, we propose a novel vector quantization framework that iteratively minimizes quantization error. First, we provide a detailed review on a relevant vector quantization method named \textit{residual vector quantization} (RVQ). Next, we propose \textit{generalized residual vector quantization} (GRVQ) to further improve over RVQ. Many vector quantization methods can be viewed as the special cases of our proposed framework. We evaluate GRVQ on several large scale benchmark datasets for large scale search, classification and object retrieval. We compared GRVQ with existing methods in detail. Extensive experiments demonstrate our GRVQ framework substantially outperforms existing methods in term of quantization accuracy and computation efficiency.Comment: published on International Conference on Multimedia and Expo 201

    Bolt: Accelerated Data Mining with Fast Vector Compression

    Full text link
    Vectors of data are at the heart of machine learning and data mining. Recently, vector quantization methods have shown great promise in reducing both the time and space costs of operating on vectors. We introduce a vector quantization algorithm that can compress vectors over 12x faster than existing techniques while also accelerating approximate vector operations such as distance and dot product computations by up to 10x. Because it can encode over 2GB of vectors per second, it makes vector quantization cheap enough to employ in many more circumstances. For example, using our technique to compute approximate dot products in a nested loop can multiply matrices faster than a state-of-the-art BLAS implementation, even when our algorithm must first compress the matrices. In addition to showing the above speedups, we demonstrate that our approach can accelerate nearest neighbor search and maximum inner product search by over 100x compared to floating point operations and up to 10x compared to other vector quantization methods. Our approximate Euclidean distance and dot product computations are not only faster than those of related algorithms with slower encodings, but also faster than Hamming distance computations, which have direct hardware support on the tested platforms. We also assess the errors of our algorithm's approximate distances and dot products, and find that it is competitive with existing, slower vector quantization algorithms.Comment: Research track paper at KDD 201
    • …
    corecore