2,166 research outputs found

    Frequency Controlled Noise Cancellation for Audio and Hearing Purposes

    Get PDF
    Methods for hearing aids sought to compensate for loss in hearing by amplifying signals of interest in the audio band. In real-world, audio signals are prone to outdoor noise which can be destructive for hearing aid.  Eliminating interfering noise at high speed and low power consumption became a target for recent researches. Modern hearing compensation technologies use digital signal processing which requires minimum implementation costs to reduce power consumption, as well as avoiding delay in real time processing. In this paper, frequency controlled noise cancellation (FCNC) strategy for hearing aid and audio communication is developed with low complexity and least time delay. The contribution of the current work is made by offering a method that is capable of removing inherent distortion due filter-bank insertion and assigning adaptive filtering to a particular sub-band to remove external noise. The performance of the proposed FCNC was examined under frequency-limited noise, which corrupts particular parts of the audio spectrum. Results showed that the FCNC renders noise-immune audio signals with minimal number of computations and least delay. Mean square error (MSE) plots of the proposed FCNC method reached below -30 dB compared to -25 dB using conventional sub-band method and to -10 dB using standard full-band noise canceller. The proposed FCNC approach gave the lowest number of computations compared to other methods with a total of 346 computations per sample compared to 860 and 512 by conventional sub-band and full-band methods respectively. The time delay using FCNC is the least compared to the other methods

    A study on adaptive filtering for noise and echo cancellation.

    Get PDF
    The objective of this thesis is to investigate the adaptive filtering technique on the application of noise and echo cancellation. As a relatively new area in Digital Signal Processing (DSP), adaptive filters have gained a lot of popularity in the past several decades due to the advantages that they can deal with time-varying digital system and they do not require a priori knowledge of the statistics of the information to be processed. Adaptive filters have been successfully applied in a great many areas such as communications, speech processing, image processing, and noise/echo cancellation. Since Bernard Widrow and his colleagues introduced adaptive filter in the 1960s, many researchers have been working on noise/echo cancellation by using adaptive filters with different algorithms. Among these algorithms, normalized least mean square (NLMS) provides an efficient and robust approach, in which the model parameters are obtained on the base of mean square error (MSE). The choice of a structure for the adaptive filters also plays an important role on the performance of the algorithm as a whole. For this purpose, two different filter structures: finite impulse response (FIR) filter and infinite impulse response (IIR) filter have been studied. The adaptive processes with two kinds of filter structures and the aforementioned algorithm have been implemented and simulated using Matlab.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .J53. Source: Masters Abstracts International, Volume: 44-01, page: 0472. Thesis (M.A.Sc.)--University of Windsor (Canada), 2005

    Maximum-likelihood estimation of delta-domain model parameters from noisy output signals

    Get PDF
    Fast sampling is desirable to describe signal transmission through wide-bandwidth systems. The delta-operator provides an ideal discrete-time modeling description for such fast-sampled systems. However, the estimation of delta-domain model parameters is usually biased by directly applying the delta-transformations to a sampled signal corrupted by additive measurement noise. This problem is solved here by expectation-maximization, where the delta-transformations of the true signal are estimated and then used to obtain the model parameters. The method is demonstrated on a numerical example to improve on the accuracy of using a shift operator approach when the sample rate is fast

    Development of an Adaptive IIR Filter Based on Modified Robust Mixed-Norm Algorithm for Adaptive Noise Cancellation

    Get PDF
    Noise cancellation is one of the most important applications of adaptive filters. The employment of adaptive filtering in most digital signal processing tasks is currently an area of growing interest as adaptive filters, due to their dynamic nature, perform better than the traditional filters in compensating for random noise in their environment. However, the compensation for impulsive interference or noise is desired since most adaptive algorithms earlier proposed modelled noise as a random process of the White Gaussian distribution.  A modified robust mixed-norm (MRMN) algorithm recently proposed to compensate for impulsive interference has been found to be hardware efficient, however the MRMN algorithm has only been tested on adaptive FIR system identification task. In this paper, an adaptive IIR filter based on MRMN adaptive algorithm is proposed and tested for noise cancellation task. The developed filter structure was modelled and simulated in MATLAB environment. The results obtained showed that the MRMN algorithm does in fact compensate for the presence of impulsive interference, however, at a higher computational complexity relative to the LMS algorithm. Keywords: Noise cancellation, adaptive filtering, impulsive noise, adaptive algorithm, system identification, random noise DOI: 10.7176/CEIS/10-2-01 Publication date:March 31st 201

    ADAPTIVE FILTERING TECHNIQUES FOR AUDIO SOUND RECOVERY

    Get PDF
    Noise is the common problem that affects not only the daily life but also the industrial manufacturing process. There are many different type of noise coming from various sources. A lot of work has been done to improve the audio control system, especially focus on the sound recovery and noise cancellation. Adaptive filter recently have been used as a best tool to eliminate the noise and give the good result on recovering the original pure audio signal. The number of applications applying adaptive techniques has increased tremendously on the fields like telecommunication, signal processing, biomedical and sonar. The objective of this project is to applying adaptive filtering techniques to cancel the noise from the mixed signal and recover the clean original audio signal

    A study on different linear and non-linear filtering techniques of speech and speech recognition

    Get PDF
    In any signal noise is an undesired quantity, however most of thetime every signal get mixed with noise at different levels of theirprocessing and application, due to which the information containedby the signal gets distorted and makes the whole signal redundant.A speech signal is very prominent with acoustical noises like bubblenoise, car noise, street noise etc. So for removing the noises researchershave developed various techniques which are called filtering. Basicallyall the filtering techniques are not suitable for every application,hence based on the type of application some techniques are betterthan the others. Broadly, the filtering techniques can be classifiedinto two categories i.e. linear filtering and non-linear filtering.In this paper a study is presented on some of the filtering techniqueswhich are based on linear and nonlinear approaches. These techniquesincludes different adaptive filtering based on algorithm like LMS,NLMS and RLS etc., Kalman filter, ARMA and NARMA time series applicationfor filtering, neural networks combine with fuzzy i.e. ANFIS. Thispaper also includes the application of various features i.e. MFCC,LPC, PLP and gamma for filtering and recognition
    • …
    corecore