67,551 research outputs found

    Algebraic Methods in the Congested Clique

    Full text link
    In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n12/ω)O(n^{1-2/\omega}) round matrix multiplication algorithm, where ω<2.3728639\omega < 2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: -- triangle and 4-cycle counting in O(n0.158)O(n^{0.158}) rounds, improving upon the O(n1/3)O(n^{1/3}) triangle detection algorithm of Dolev et al. [DISC 2012], -- a (1+o(1))(1 + o(1))-approximation of all-pairs shortest paths in O(n0.158)O(n^{0.158}) rounds, improving upon the O~(n1/2)\tilde{O} (n^{1/2})-round (2+o(1))(2 + o(1))-approximation algorithm of Nanongkai [STOC 2014], and -- computing the girth in O(n0.158)O(n^{0.158}) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.Comment: This is work is a merger of arxiv:1412.2109 and arxiv:1412.266

    Answer Set Solving with Bounded Treewidth Revisited

    Full text link
    Parameterized algorithms are a way to solve hard problems more efficiently, given that a specific parameter of the input is small. In this paper, we apply this idea to the field of answer set programming (ASP). To this end, we propose two kinds of graph representations of programs to exploit their treewidth as a parameter. Treewidth roughly measures to which extent the internal structure of a program resembles a tree. Our main contribution is the design of parameterized dynamic programming algorithms, which run in linear time if the treewidth and weights of the given program are bounded. Compared to previous work, our algorithms handle the full syntax of ASP. Finally, we report on an empirical evaluation that shows good runtime behaviour for benchmark instances of low treewidth, especially for counting answer sets.Comment: This paper extends and updates a paper that has been presented on the workshop TAASP'16 (arXiv:1612.07601). We provide a higher detail level, full proofs and more example

    Approximately Counting Triangles in Sublinear Time

    Full text link
    We consider the problem of estimating the number of triangles in a graph. This problem has been extensively studied in both theory and practice, but all existing algorithms read the entire graph. In this work we design a {\em sublinear-time\/} algorithm for approximating the number of triangles in a graph, where the algorithm is given query access to the graph. The allowed queries are degree queries, vertex-pair queries and neighbor queries. We show that for any given approximation parameter 0<ϵ<10<\epsilon<1, the algorithm provides an estimate t^\widehat{t} such that with high constant probability, (1ϵ)t<t^<(1+ϵ)t(1-\epsilon)\cdot t< \widehat{t}<(1+\epsilon)\cdot t, where tt is the number of triangles in the graph GG. The expected query complexity of the algorithm is  ⁣(nt1/3+min{m,m3/2t})poly(logn,1/ϵ)\!\left(\frac{n}{t^{1/3}} + \min\left\{m, \frac{m^{3/2}}{t}\right\}\right)\cdot {\rm poly}(\log n, 1/\epsilon), where nn is the number of vertices in the graph and mm is the number of edges, and the expected running time is  ⁣(nt1/3+m3/2t)poly(logn,1/ϵ)\!\left(\frac{n}{t^{1/3}} + \frac{m^{3/2}}{t}\right)\cdot {\rm poly}(\log n, 1/\epsilon). We also prove that Ω ⁣(nt1/3+min{m,m3/2t})\Omega\!\left(\frac{n}{t^{1/3}} + \min\left\{m, \frac{m^{3/2}}{t}\right\}\right) queries are necessary, thus establishing that the query complexity of this algorithm is optimal up to polylogarithmic factors in nn (and the dependence on 1/ϵ1/\epsilon).Comment: To appear in the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015

    Assigning channels via the meet-in-the-middle approach

    Full text link
    We study the complexity of the Channel Assignment problem. By applying the meet-in-the-middle approach we get an algorithm for the \ell-bounded Channel Assignment (when the edge weights are bounded by \ell) running in time O((2+1)n)O^*((2\sqrt{\ell+1})^n). This is the first algorithm which breaks the (O())n(O(\ell))^n barrier. We extend this algorithm to the counting variant, at the cost of slightly higher polynomial factor. A major open problem asks whether Channel Assignment admits a O(cn)O(c^n)-time algorithm, for a constant cc independent of \ell. We consider a similar question for Generalized T-Coloring, a CSP problem that generalizes \CA. We show that Generalized T-Coloring does not admit a 22o(n)poly(r)2^{2^{o\left(\sqrt{n}\right)}} {\rm poly}(r)-time algorithm, where rr is the size of the instance.Comment: SWAT 2014: 282-29

    Experimental Detection of Quantum Channels

    Full text link
    We demonstrate experimentally the possibility of efficiently detecting properties of quantum channels and quantum gates. The optimal detection scheme is first achieved for non entanglement breaking channels of the depolarizing form and is based on the generation and detection of polarized entangled photons. We then demonstrate channel detection for non separable maps by considering the CNOT gate and employing two-photon hyperentangled states.Comment: 8 pages, 9 figure
    corecore